检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。 图2 任务详情 评估报告: 任务状
型相比,BI专业大模型更适合执行数据分析、报告生成和业务洞察等任务。 模型推理资产即部署模型所需的cpu、gpu资源(专属资源池)。如果不订购推理资产,可以使用订购的盘古模型进行训练,但无法部署训练后的模型。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即购买”,平台将
演的角色、指定可以访问的工具、设置结果的输出风格等。 模型配置 嵌入模型 用于对AI助手进行任务规划、工具选择和生成回复。 模型版本 选择与“嵌入模型”对应的版本。例如,嵌入模型为N2系列,则模型版本也为N2。 工具配置 网页搜索 开启网页搜索后,可以通过调用web搜索来解决模型对于事实类问题回答不好的现象。
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的模型,回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大
采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。 创建模型压缩任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型压缩”。 单击界面右上角“创建压缩任务”,进入创建压缩任务页面。
为什么微调后的模型,只能回答在训练样本中学过的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘
为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来
径。 图3 导出模型 单击“确定”,导出模型。 模型导出成功后,可以在obs中查看导出后的模型文件。下载该obs文件,上传到环境B对应的obs桶中。 登录环境B的盘古大模型套件平台,在“模型迁移”页面,选择“导入模型”,输入模型对应的obs地址和模型名称后,单击“确定”,启动导入模型任务。
为什么微调后的模型,回答总是在重复某一句或某几句话 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“
为什么微调后的模型,评估结果很好,但实际场景表现却很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景
2-Default模型,或其衍生模型,使用通用模型或其他模型无法运行。当前的moduleVersion需要配置为“N2_agent_v2”,如上例所示,因此模型的url要配置为Pangu-NLP-N2-Default模型的地址。 支持注册开源模型,开源模型的定义可参考开源模型。 final
在Token计算器中选择所需的模型,并输入文本内容后,单击“开始计算”即可统计输入文本的Token数量。 图1 Token计算器 预置模型和已经部署的模型可以使用Token计算器。 父主题: 平台资源管理
agentSession相当于Agent的会话Memory。一般情况下,需要将agentSession对象在外部持久化,在每一轮会话传入agentSession对象中的sessionId,下面的示例代码用一个map对象模拟外部的持久化: /** * 在生产环境下,agentSession建议在外部持久化,而不是在内存中
范围见模型API规范 top_p: Optional[float] # 核采样值, 和temperature不同时配置 presence_penalty: Optional[float] # 存在惩罚,增加模型谈论新主题的可能性,范围见具体模型API规范
洗流程的搭建,搭建过程中可以通过“执行节点”功能查看算子对数据的清洗效果。算子功能的详细介绍请参见清洗算子功能介绍。 图3 执行节点 用户配置算子后推荐增加、显示备注信息,用于团队其他成员快速了解算子编排。 图4 增加并显示备注信息 对于搭建满意的清洗流程,可以“发布模板”,后续
PANGUDOC).filePath(filePath).mode("1").build()); // 初始化pangudoc split(通过配置文件指定filePath和mode) DocSplit docPanguSplit = DocSplits.of(DocSplits.PANGUDOC);
的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型 token 简介 NLP大模型 盘古-NLP-N1-基础功能模型-32K 部署可选4096、32768 基于NLP-N1-基模型训练的基础功能模型,具备文案生成、多轮对话、实体抽取、翻译、知识问答等大模型通用能力,具有32K上下文能力,可外推至128K。
ovider, vector_config) 定义一个ToolRetriever包含2个参数,一个ToolProvider,一个向量数据库配置。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider,I
"description")) .build()); 定义一个ToolRetriever包含ToolProvider和向量数据库配置2个参数。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvid