检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 图1 创建训练作业 训练作业启动命令中输入: cd /h
lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink
表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/train/<commit_id>代码目录。
表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
benchmark-tools访问推理客户端返回警告 解决方法: 减少参数--prompt-tokens和--output-tokens的值,或者增大启动服务的参数--max-model-len的值。 问题11:使用离线推理时,性能较差或精度异常 解决方法:将block_size大小设置为128 from
PyTorch NPU训练指导(6.3.907) LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907) LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907) 支持如下模型适配PyTorch-NPU的推理。
是否支持预览。可选值如下: true:支持预览 false:不支持预览 process_parameter 否 String 图像缩略设置,同OBS缩略图设置,详见OBS缩略图设置。如:image/resize,m_lfit,h_200表示等比缩放目标缩略图并设置高度为200像素。 sample_state
import SingleNodeService 可以重写的方法有以下几种。 表2 重写方法 方法名 说明 __init__(self, model_name, model_path) 初始化方法,适用于深度学习框架模型。该方法内加载模型及标签等(pytorch和caffe类型模型必须重写,实现模型加载逻辑)。
Server资源开通,购买Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254
benchmark-tools访问推理客户端返回警告 解决方法: 减少参数--prompt-tokens和--output-tokens的值,或者增大启动服务的参数--max-model-len的值。 问题11:使用离线推理时,性能较差或精度异常 解决方法:将block_size大小设置为128 from
expected output_len 解决方法: 减少参数--prompt-tokens和--output-tokens的值,或者增大启动服务的参数--max-model-len的值。 问题11:使用离线推理时,性能较差或精度异常 解决方法:将block_size大小设置为128 from
g-jobs/{training_job_id}/events 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。
载。 解决方法 方法一(本地):打开命令面板(Windows: Ctrl+Shift+P,macOS:Cmd+Shift+P),搜索“Kill VS Code Server on Host”,选择出问题的实例进行自动清除,然后重新进行连接。 图1 清除异常的实例 方法二(远端):在VS
benchmark-tools访问推理客户端返回警告 解决方法: 减少参数--prompt-tokens和--output-tokens的值,或者增大启动服务的参数--max-model-len的值。 问题11:使用离线推理时,性能较差或精度异常 解决方法:将block_size大小设置为128 from