检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进
创建有监督训练任务 创建有监督微调训练任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),
agentSession相当于Agent的会话Memory。一般情况下,需要将agentSession对象在外部持久化,在每一轮会话传入agentSession对象中的sessionId,下面的示例代码用一个map对象模拟外部的持久化: /** * 在生产环境下,agentSession建议在外部持久化,而不是在内存中
错误码 当您调用API时,如果遇到“APIGW”开头的错误码,请参见API网关错误码进行处理。遇到“APIG”开头的错误码,请参考本文档进行处理。 表1 错误码 错误码 错误信息 说明 建议解决方法 PANGU.0001 unknown error. 未知错误。 请联系服务技术支持协助解决。
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G
Vector Embedding Embedding模块用于对Embedding模型API的适配封装,提供统一的接口快速地调用CSS模型embedding能力。 初始化:根据相应模型定义Embedding类。例如,使用华为CSS Embedding为:Embeddings.of(Embeddings
Vector Embedding Emebedding模块用于对Emebedding模型API的适配封装,提供统一的接口快速地调用CSS等模型emebedding能力。 初始化:根据相应模型定义Emebedding类,如使用华为CSS Embedding为:Embeddings.of("css");。
是否可用于训练 >=80% 绿色 可用 >=40% 黄色 预警,需要优化数据 <40% 红色 告警,需要优化数据 (可选)当“我的数据集”的OBS数据发生变更时,可以单击右上角“检测”按钮重新校验数据集,也可以在“我的数据集”页签中,单击操作栏中的“更多 > 检测”,重新校验数据集。
查看评估任务详情 查看评估任务详情 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。
LLMs(语言模型) LLMs模块用于对大语言模型API的适配封装,提供统一的接口快速地调用盘古、GALLERY三方模型等模型API。 初始化:根据相应模型定义LLM类,如使用盘古LLM为: LLMs.of("pangu")。 from pangukitsappdev.api.llms
Agent助手 应用介绍 通过模型对复杂任务的自动拆解与外部工具调用执行能力,通过与用户多轮对话,实现会议室预订场景。 环境准备 Java 1.8。 参考安装章节,完成基础环境准备。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam、pangu配置项。信息收集请参考准备工作。
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF