检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。
data_sources["type"] = 0 # 数据来源类型,0表示OBS data_sources["path"] = "/obs-gaia-test/data/image/image-classification/" # 数据在OBS中的路径 work_path = dict()
它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。
模型镜像版本 模型 版本 CANN cann_8.0.rc2 驱动 23.0.5 PyTorch 2.1.0 Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个
它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。
# 推理工具 代码上传至OBS 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name>
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。
ow的开发态。当确定好整条流水线后,开发者可以将流水线固化下来,提供给其他人使用。使用者无需关注流水线中包含什么算法,也不需要关注流水线是如何实现的。使用者只需要关注流水线生产出来的模型或者应用是否符合上线要求,如果不符合,是否需要调整数据和参数重新迭代。这种使用固化下来的流水线
id") 方式二:根据创建训练作业生成的训练作业对象删除。 job_instance.delete_job() 参数说明 表1 delete_job_by_id请求参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法请参考Session鉴权。 job_id
说明 资产标题 在AI Gallery显示的资产名称。 来源 可选择“ModelArts”、“对象存储服务(OBS)”、“本地上传”。 ModelArts区域 选择当前控制台所在的区域。 OBS区域 选择与当前控制台一致的区域。 存储位置 用来存储发布的资产。 数据类型 当前数据集的数据类型。
0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除 update_time Long 更新时间。 worker_id String
keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) # prints: [[1., 0.
5-32B √ √ 前提条件 在“我的模型”页面存在已创建成功的模型。 已准备好用于存放压缩后模型权重文件的OBS桶,OBS桶必须和MaaS服务在同一个Region下。 创建压缩作业 登录ModelArts Studio控制台,在顶部导航栏选择目标区域。 在左侧导航栏,选择“模型压缩”进入作业列表。
DockerFile构建镜像(可选) 本章节主要介绍通过DockerFile文件构建训练镜像,将训练过程中依赖包封装使用,过程中需要连接互联网git clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user
DockerFile构建镜像(可选) 本章节主要介绍通过DockerFile文件构建训练镜像,将训练过程中依赖包封装使用,过程中需要连接互联网git clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user
创建导出任务 将当前数据集的样本导出到指定的OBS路径下。仅支持图像分类、物体检测、图像分割和自由格式数据集。 dataset.export_data(path) 示例代码 导出数据集到OBS目录 from modelarts.session import Session from
path String 工作路径。可选值如下: 如果type是OBS,source为OBS路径。 如果type是DATASET,source为数据集ID。 type String 工作路径的类型。可选值如下: OBS:OBS路径 DATASET:数据集 version_id String
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig sta
在“数据标注”节点单击“实例详情”进入“音频标注”页面。声音分类项目创建时,音频来源有两种,通过本地添加或同步OBS中的数据。 添加音频:您可以将本地音频快速添加到ModelArts,同时自动上传至创建项目时所选择的OBS路径中。单击“添加数据”,在弹出的对话框中输入正确的数据并添加。 仅支持16bit