检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
JSON内容需定义一个source字段,字段值是OBS的文件地址,有2种表达形式: 桶路径“<obs path>{{桶名}}/{{对象名}}/文件名”,适用于访问自己名下的OBS数据;您可以访问OBS服务的对象获取路径。<obs path>可以为“obs://”或“s3://”。 OBS生成的分享链接,包含
请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169
度更高。 计算节点规格 即智能标注任务使用的资源规格。 说明: 智能标注创建时免费,但OBS存储会按需收费,请参考计费详情。为保证您的资源不浪费,标注作业与后续任务完成后,请及时清理您的OBS桶。 计算节点个数 默认为1,表示单机模式。目前仅支持此参数值。 表2 预标注 参数 说明
# 推理工具 代码上传至OBS 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name>
ModelArts平台是否支持多模型导入? ModelArts平台从对象存储服务(OBS)中导入模型包适用于单模型场景。 如果有多模型复合场景,推荐使用自定义镜像方式,通过从容器镜像(SWR)中选择元模型的方式创建模型部署服务。 制作自定义镜像请参考从0-1制作自定义镜像并创建AI应用。
如何将Keras的.h5格式的模型导入到ModelArts中? ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
path String 存储路径。 如果type为“obs”类型,该值必须填写,该值需为有效的OBS桶路径,且以“/”结束。不能指定为OBS桶的根目录,需指定为OBS桶下的具体目录。 如果type为“obsfs”类型,该值需为有效的OBS并行文件系统的桶名(当前CCE不支持挂载子目录)。
ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突? 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
复制数据集到本地主要是为了防止长时间访问OBS容易导致OBS连接中断使得作业卡住,所以一般先将数据复制到本地再进行操作。 数据集复制有两种方式,推荐使用OBS路径复制。 OBS路径(推荐) 直接使用moxing的copy_parallel接口,复制对应的OBS路径。 ModelArts数据
否 String 存储路径。 如果type为“obs”类型,该值必须填写,该值需为有效的OBS桶路径,且以“/”结束。不能指定为OBS桶的根目录,需指定为OBS桶下的具体目录。 如果type为“obsfs”类型,该值需为有效的OBS并行文件系统的桶名(当前CCE不支持挂载子目录)。
多机训练场景下,需要将CODE_DIR修改为OBS_CODE_DIR目录,则可以使用scripts/tools/sync_with_obs.py工具将其它节点的权重文件同步上传到主节点。修改代码如图3。 图3 多机同步权重文件 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准
设置输入与输出。需根据实际数据情况选择“数据集”或“OBS目录”。设置为“数据集”时,需填写“数据集名称”和“数据集版本”;设置为“OBS目录”时,需填写正确的OBS路径。 图3 输入输出设置-数据集 图4 输入输出设置-OBS目录 确认参数填写无误后,单击“创建”,完成数据处理任务的创建。
设置输入与输出。需根据实际数据情况选择“数据集”或“OBS目录”。设置为“数据集”时,需填写“数据集名称”和“数据集版本”;设置为“OBS目录”时,需填写正确的OBS路径。 图2 输入输出设置-数据集 图3 输入输出设置-OBS目录 确认参数填写无误后,单击“创建”,完成数据处理任务的创建。
create_dir=False) input_data1 = wf.data.OBSPath(obs_path = storage) # 得到的路径为:/root/ input_data2 = wf.data.OBSPath(obs_path = storage.join("directory_path"))
了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括: {pt, sft}. 新增 FINETUNING_TYPE,表示微调的策略,可以选择的参数包括:{full, lora} 删除
多机训练场景下,需要将CODE_DIR修改为OBS_CODE_DIR目录,则可以使用scripts/tools/sync_with_obs.py工具将其它节点的权重文件同步上传到主节点。修改代码如图3。 图3 多机同步权重文件 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准