检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常用概念 应用开发套件 应用开发套件指ModelArts Pro为企业级AI应用打造的专业开发套件,套件基于华为云的先进算法和快速训练能力,提供预置工作流和模型,通过工作流指引能够快速开发AI应用,解决具体行业场景问题。 ModelArts Pro应用开发套件包括自然语言处理套件
什么是ModelArts Pro ModelArts Pro是为企业级AI应用打造的专业开发套件。基于华为云的先进算法和快速训练能力,提供预置工作流和模型,提升企业AI应用的开发效率,降低开发难度。同时,支持客户自主进行工作流编排,快速实现应用的开发、共享和发布,共建开放生态,实现普惠行业AI落地。ModelArts
文字识别套件使用简介 ModelArts Pro 是为企业级AI应用打造的专业开发套件。基于华为云的先进算法和快速训练能力,提供预置工作流和模型,提升企业AI应用的开发效率,降低开发难度。文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字
通用图像分类工作流支持将服务一键部署至边缘设备,如果将服务部署至边缘设备,请提前在华为HiLens控制台注册Atlas 500设备,详细注册方式请前往华为云论坛参与讨论。 操作步骤 在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明
HiLens套件 HiLens为端云协同AI应用开发平台,提供简单易用的开发框架、开箱即用的开发环境、丰富的AI技能市场和云上管理平台,帮助用户高效开发多模态AI技能,并将其快速部署到端侧计算设备。 HiLens套件提供可训练技能模板开发技能,无需代码,只需自主上传训练数据,快速
云状识别工作流支持将服务一键部署至边缘设备,如果将服务部署至边缘设备,请提前在华为HiLens控制台注册Atlas 500设备,详细注册方式请前往华为云论坛参与讨论。 已在视觉套件控制台选择“云状识别工作流”新建应用,详情请见新建应用。 已准备数据并上传至OBS,详情请见准备数据。 进入应用开发页面
云状识别工作流支持将服务一键部署至边缘设备,如果将服务部署至边缘设备,请提前在华为HiLens控制台注册Atlas 500设备,详细注册方式请前往华为云论坛参与讨论。 操作步骤 在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明
刹车盘识别工作流支持将服务一键部署至边缘设备,如果将服务部署至边缘设备,请提前在华为HiLens控制台注册Atlas 500设备,详细注册方式请前往华为云论坛参与讨论。 操作步骤 在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明
刹车盘识别工作流支持将服务一键部署至边缘设备,如果将服务部署至边缘设备,请提前在华为HiLens控制台注册HiLens Kit设备,详细注册方式请前往华为云论坛参与讨论。 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,详情请见新建应用。 准备好数据并上传至OBS,详情请见准备数据。 进入应用开发页面
”,即可进入行业套件的控制台。 例如单击自然语言处理套件卡片的“进入套件”,即可进入自然语言处理套件的控制台。 图1 进入套件 父主题: 如何使用ModelArts Pro
通用图像分类工作流支持将服务一键部署至边缘设备,如果将服务部署至边缘设备,请提前在华为HiLens控制台注册HiLens Kit设备,详细注册方式请前往华为云论坛参与讨论。 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,详情请见新建应用。 准备好数据并上传至OBS,详情请见准备数据。
步骤3:上传模板图片 步骤4:定义预处理 步骤5:框选参照字段 步骤6:框选识别区 步骤7:评估模板 步骤8:部署模板 准备工作 注册华为帐号,开通华为云,并完成套件申请、访问授权配置等准备工作,详情请见准备工作。 步骤1:准备数据 在本地准备好两张身份证图片,一张用于制作模板,一张用于评估模板。图片要求如下:
用两种工作流开发应用的流程相同。 由于通用文本分类工作流和多语种文本分类工作流开发应用的流程相同,因此本章节以通用文本分类工作流为例,介绍如何使用自然语言处理套件中的文本分类工作流开发应用,通过上传训练数据、训练模型,将生成的模型部署为在线服务。部署完成后,用户可通过在线服务分类文本内容。
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
训练模型 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建