检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 父主题: 常见错误原因和解决方法
文件不存在,请忽略该报错继续执行后续操作。 检查复制的OBS的路径是否与开发环境或训练作业在同一个区域。 进入ModelArts管理控制台,查看其所在区域。然后再进入OBS管理控制台,查看您使用的OBS桶所在的区域。查看是否在同一区域。 是,请执行3。 否,请在ModelArts同一区域的OBS中新建桶和文件夹,并将所需的数据上传至此OBS桶中。
Lite Server支持的事件列表 通过对接CES,可以将业务中的重要事件或对云资源的操作事件收集到CES云监控服务,并在事件发生时进行告警。Lite Server支持的事件来源主要是BMS,具体事件列表如下。 表2 表2 Lite Server支持的事件列表 事件来源 命名空间
/scripts/install.sh; sh ./scripts/obs_pipeline.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取toke
在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取toke
建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatC
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA
数据输出通道映射的容器本地路径。 remote remote object 数据实际输出信息。 表22 remote 参数 参数类型 描述 obs obs object 数据实际输出到OBS。 表23 obs 参数 参数类型 描述 obs_url String 数据实际输出到OBS的路径。
本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过Notebook环境编辑
获取训练镜像 请确保在正确的Region下获取镜像。建议使用官方提供的镜像部署训练服务。镜像地址{image_url}请参见表1。 docker pull {image_url} Step5 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复
编辑llm_train/AscendSpeed中的Dockerfile文件第一行镜像地址,修改为本文档中的基础镜像地址。 FROM {image_url} (选填)编辑llm_train/AscendSpeed中的Dockerfile文件,修改git命令,填写自己的git账户信息。 git config
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量
可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(global-batch-size)。可将MBS参数值调小至1,但需要遵循GBS/MBS的值能够被NPU/(TP×PP)的值进行整除。 可调整参数:SEQ_LEN要处理的最大的序列长
编辑llm_train/AscendSpeed中的Dockerfile文件第一行镜像地址,修改为本文档中的基础镜像地址。 FROM {image_url} (选填)编辑llm_train/AscendSpeed中的Dockerfile文件,修改git命令,填写自己的git账户信息。 git config
可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(global-batch-size)。可将MBS参数值调小至1,但需要遵循GBS/MBS的值能够被NPU/(TP×PP)的值进行整除。 可调整参数:SEQ_LEN要处理的最大的序列长
当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5
可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(global-batch-size)。可将MBS参数值调小至1,但需要遵循GBS/MBS的值能够被NPU/(TP×PP)的值进行整除。 可调整参数:SEQ_LEN要处理的最大的序列长
一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: