检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
利用OBS Browser+工具将下载的模型文件上传至创建的文件夹目录下。 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的AK和SK进行签名验证,确保通过授权的账号才能访问指定的OBS资源。
ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_
ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_
利用OBS Browser+工具将下载的模型文件上传至创建的文件夹目录下。 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的AK和SK进行签名验证,确保通过授权的账号才能访问指定的OBS资源。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和
查看日志和性能 单击作业详情页面,则可查看训练过程中的详细信息。 图1 查看训练作业 在作业详情页的日志页签,查看最后一个节点的日志,其包含“elapsed time per iteration (ms)”数据,可换算为tokens/s/p的性能数据。 吞吐量(tokens/s/p):global
ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_
Turbo不能直接挂载到容器的工作路径 /home/ma-user/work/下,会覆盖镜像中的代码目录,导致训练失败。 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多Mode
分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3
当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5
当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 export GLOO_SOCKET_IFNAME=enp67s0f5 #
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
在AscendCloud-AIGC代码包的multimodal_algorithm目录下集成了多个多模态模型的适配脚本,用户可通过不同模型中的xxx_install.sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github上拉取模型的官方源码,并通过git
生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1.5模型基础上,使用新的数据集进行微调(f
推荐使用“西南-贵阳一”Region上的Server资源和Ascend Snt9B。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.910软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。
他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督