检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
volumes=[nfs-x]”。 原因分析 用户账号下的SFS Turbo所在的VPC网络需要与专属资源池所在的网络打通,运行于该专属资源池的训练作业才能正常挂载SFS。因此,当训练作业挂载SFS失败时,可能是网络不通导致的。 处理步骤 进入训练作业详情页,在左侧获取SFS Turbo的名称。 图1 获取SFS
vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量 --max-
vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量 --max-
原因分析 出现该问题的可能原因: 直接在OBS上写tensorboard文件,存在不稳定的风险。 处理方法 建议先将Tensorboard文件写到本地,然后再复制回OBS。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接
集群在相同vpc下的某一台机器上。单击kubectl后的“配置”按钮。按照界面提示步骤操作即可。 图3 通过内网使用kubectl工具 通过公网使用kubectl工具,可以将kubectl安装在任一台可以访问公网的机器。 首先需要绑定公网地址,单击公网地址后的“绑定”按钮。 图4
ensor静态量化所需的2. 抽取kv-cache量化系数生成的json文件一致,只需把每一层的量化系数修改为列表,列表的长度为kv的头数,列表中每一个值代表每一个kv头使用的量化系数。内容示例如下: 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数,启动kv-ca
ensor静态量化所需的2. 抽取kv-cache量化系数生成的json文件一致,只需把每一层的量化系数修改为列表,列表的长度为kv的头数,列表中每一个值代表每一个kv头使用的量化系数。内容示例如下: 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数,启动kv-ca
推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
训练模型:可以在ModelArts服务中进行,也可以在您的本地开发环境进行,本地开发的模型需要上传到华为云OBS服务。 创建模型:把模型文件和推理文件导入到ModelArts的模型仓库中,进行版本化管理,并构建为可运行的模型。 部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业
权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以llama2-70b和l
在AscendCloud-AIGC代码包的multimodal_algorithm目录下集成了多个多模态模型的适配脚本,用户可通过不同模型中的xxx_install.sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github上拉取模型的官方源码,并通过git
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
关于如何将权重文件存储到OBS桶,请参见上传概述。 单击“自定义权重存储路径”右侧的文件图标,选择存放模型权重文件的OBS路径(必须选择到模型文件夹),然后单击“确定”。 单次上传本地文件到OBS的总大小不能超过5GB,详情请参见如何上传超过5GB的大对象。 /3003****/79a
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
tch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
tory/data 【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。