检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在“创建加工数据集”页面,选择需要加工的气象类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集 单击“下一步”进入“算子编排”页面。对于气象类数据集,可选择的加工算子及参数配置请参见表1。
在“创建加工数据集”页面,选择需要加工的图片类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集 单击“下一步”进入“算子编排”页面。对于图片类数据集,可选择的加工算子及参数配置请参见表1、表2。
模型”中可以查看当前空间和预置的模型资产,如果有多个空间的访问权限,可切换空间查看其他空间内的资产。 在“本空间”页签可查看模型资产,并可对模型进行删除操作。单击模型名称可进入详情页面查看模型的基础信息。 在“预置”页签可查看用户可使用的各类模型的预置资产。 图1 查看预置模型预置模型
科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少? 科技行业公司的中位利润和市值是多少? 科技行业公司的总利润和市值是多少? … 来源四:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,再基于大模型(比如盘古提供的任意一个规格的基础功能模
构建外,也可能会使用开源的数据集。数据版权功能主要用于记录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 图5 设置数据版权 单击页面右下角
Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 大模型微调训练类问题
提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简
生成的内容结尾必须要引导观众购买; 6.生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样;
用任务的基础能力,但还没有针对特定的业务场景进行优化。预训练后的模型主要用于多个任务的底层支持。 通过使用海量的互联网文本语料对模型进行预训练,使模型理解人类语言的基本结构。 微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
计算出来的最低值。 热身比例 热身比例是指在模型训练过程中逐渐增加学习率的过程。在训练的初始阶段,模型的权重通常是随机初始化的,此时模型的预测能力较弱。如果直接使用较大的学习率进行训练,可能会导致模型在初始阶段更新过快,从而影响模型的收敛。 为了解决这个问题,可以在训练的初始阶段
10TB。 问答排序 jsonl、csv jsonl格式:context表示问题,targets的回答1、回答2、回答3表示答案的优劣顺序,最好的答案排在最前面。targets内容的数量至少为2个,且最多为6个,具体格式示例如下: { "context":"context内容","targets":["回答1"
选择“盘古大模型”。 模型类型 选择“NLP大模型”。 部署模型 选择需要进行部署的模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 最大TOKEN长度 模型可最大请求的上下文TOKEN数。 架构类型 算法所支持的结构类型,模型选择完成后,会自动适配架构类型。 安全护栏 选择模式 安
个平台预置好的全球中期降水预测模型,并选择对应的全球中期天气要素预测模型。并且至少有一个中期天气要素模型时间分辨率要小于等于降水模型时间分辨率。 部署模型 在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 边缘部署:算法部署至客户的边缘设备中。