检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
应用层:容器化部署,业务节点跨AZ分布。即使某AZ异常,Apisix可以将流量转发到正常应用后端。 中间件层:Kafka、Solr和ES采用3AZ集群部署,任意一个AZ故障,服务仍然可用;Redis采用双AZ主备节点部署。 数据层:MySQL数据库采用双AZ主备部署实现HA;Mo
由CCoE团队负责集中部署和运维,所以CCoE团队更容易识别出各个业务系统所需要的公共资源,进而集中部署和管理这些公共资源,同时也需要通过集中化的手段统一管理所有业务单元下的云资源,并进行集中的安全运营和成本管理。应用团队完全不用关心基础设施和云资源的部署和管理,可以将主要精力放
IT部门或者外包给云实施专业服务提供商 迁移实施工程师 迁移方案实施:根据架构师设计的技术方案和调研评估工程师提供的报告,具体实施业务系统的迁移和部署工作,包括环境搭建、数据迁移、应用部署、配置调整等。 测试和验证:对上云后的系统进行全面的测试和验证,确保系统功能正常、性能稳定和安全可靠。 故障排除:及时处理
降低成本。 自动化伸缩:通过自动化的监控和调度机制,云平台能够根据预设的策略和实时的负载情况,自动进行资源的伸缩。 快速部署和回收:相较于传统的硬件采购和部署周期,云上资源的创建和销毁可以在几秒或几分钟内完成,大幅提高了资源的弹性速度。 提升系统韧性 系统韧性是指系统在面对各种外
如,使用持续集成和持续交付(CI/CD)工具来自动构建、测试和部署应用程序。 基础设施即代码(IaC):采用基础设施即代码的方法可以将基础设施配置和管理纳入代码库中。这样可以确保基础设施的可重复性、版本控制和自动化部署,从而提高整个环境的稳定性和可靠性。 集中日志和监控:通过集中
灵活开通导致精细化管控难:云的灵活扩展和支出限制少,有利于业务发展和创 新,但也容易产生资源浪费。如为了追求性能和质量,业务团队配置的资源大 于运行工作负载实际需要,产生过度配置;部分项目新建环境或者扩容实例 后,最后忘记关闭形成闲置等; 企业面对这些问题时,发现难以精细化管理云成本,也难以选
建议实现端到端的双AZ部署,如下图所示。 图1 双AZ高可用设计 设计要点: 业务模块:集群部署的业务,资源分别部署到 2 个AZ内,并通过 ELB 实现双AZ的负载均衡;单点业务ECS可通过 SDRS 作AZ级容灾。 云服务高可用:主备节点分别双AZ部署。 数据库同步:云上使用
业务变化。如在进行一些促销活动时,对资源的需求往往比正常要高出多倍,这时企业在云上就可以通过可视化界面或者 OpenAPI 快速升级资源的配置,将资源调整到更高规格的实例上(如更多的 CPU、内存、带宽、磁盘空间等),以应对活动的流量冲击;而在活动过后,又可以将规格收缩回原来的规格,达到降低成本的目的。
根据不同场景选择不同的解决方法,并且结合多种方法,这样可以更容易地找到一种与需求符合的方法; 不断迭代的方法,使用数据驱动来优化资源类型和配置选项的选择; 性能度量 设置性能度量和监控指标,以捕获关键的性能指标; 使用可视化技术呈现性指标和性能问题(如:异常状态、低利用率等); 性能监测
间、资源利用率、并发性等。通过监测作业的执行指标和性能指标,可以评估迁移后的作业性能是否符合预期。如果作业的性能有问题,可能需要调整作业的配置参数、优化作业代码或考虑资源调配的问题。 在作业验证过程中,可以使用监控工具、日志分析和数据校验等手段,确保迁移后的大数据任务的可靠性和稳定性。
境进行集中化的IT治理。CCoE团队赋能应用团队全权负责业务系统所需云资源的部署和运维,这样既可以减轻CCoE团队的负担,又可以提升应用团队的自主性,进一步提升应用系统的敏捷性。为避免各业务单元独立部署和运维云资源带来的标准不统一问题,CCoE团队需要制定相应的IT治理策略强制各
确保网络安全和性能,满足数据传输要求。 实现网络的弹性和可扩展性,适应业务变化。 规划云网络架构,配置虚拟网络、子网、安全组等。 与安全团队合作,实施网络安全策略。 监控网络性能,优化网络配置。 合规审计专家 确保云化转型符合相关法律法规和行业标准。 降低合规风险,避免法律纠纷和罚款。
施工作,包括数据迁移、应用迁移、系统配置、业务割接等,确保迁移过程的数据一致性、安全性和性能。迁移实施工作属于一次性工作,经常会外包给云服务商或者云实施专业服务提供商。 云架构师:来自IT架构部门或具备深厚云技术背景的专家,负责云上架构的部署和优化,为实施团队提供技术支持和指导。
设计云上的大数据集群部署架构时,建议参考原则如下: 优先用大数据云服务:如果源端是自建的大数据集群,在目标云平台上有对应的云服务,且功能、性能、兼容性都满足,经评估改造工作量很小,建议设计大数据集群部署架构时,优先采用大数据云服务。如果目标云平台上没有对应的大数据集群组件,部署架构设计时,
景图,而在迁移试点和大规模上云阶段,则需要打开到每个应用系统的详细技术架构,收集每个应用系统的技术组件的详细信息,如组件版本信息,组件相关配置参数等。 大数据调研:先调研大数据的整体技术架构,然后逐步打开调研详细的信息。 每次的调研工作按照以下6步执行: 根据上云阶段,确定调研目的,梳理需要调研的信息。
中,企业需要具备敏捷的业务能力,以保持竞争优势。 快速部署业务系统:云平台提供了高度灵活和可扩展的基础设施,企业可以迅速部署业务系统和服务,缩短上市时间。 快速弹性伸缩:云计算的弹性特性使企业能够根据业务需求,动态调整资源配置,快速满足业务高峰期或突发性需求。 敏捷开发与迭代:云
设计原则 大数据的部署架构设计包括大数据集群、大数据任务调度平台和大数据应用,其中大数据应用的部署架构请参考应用架构设计。 图1 大数据架构设计分类 大数据架构设计同样要考虑架构设计的6要素: 成本 可用性 安全性 可扩展性 可运维性 性能 图2 架构设计6要素 父主题: 大数据架构设计
目的端检查:通知云厂家进行资源日常状态的巡检和高可用性检查。另外目的端切换后就是正式生产环境,要确保告警、监控、日志、安全策略均已完成配置并做最后一次检查和确认。 正向迁移任务的状态检查:系统切换前通常迁移任务已经创建完成,并在增量同步状态中,确保迁移任务的增量同步状态正常,无异常报错或告警。
调研评估工程师:由IT主管指派,来自IT部门,对企业现有的IT基础设施、业务系统、应用架构、数据存储、安全策略等进行全面调研和评估,包括硬件配置、网络架构、软件版本、依赖关系等;分析这些设施与云服务的兼容性和迁移难度,评估将现有系统迁移到云平台的可行性。调研评估工作属于一次性工作,
调研任务调度平台支持的任务类型,包括Jar类任务、SQL类任务、脚本类任务(Python、Shell)等。 调研任务调度平台是否提供可视化和管理界面,以方便任务调度的配置、监控和管理。 了解任务调度平台的容错机制,包括任务失败后的重试机制、故障恢复策略等。 调研数据流: 调研大数据平台及业务的架构图及数据流图,如下图: