检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型支持区域 模型名称 说明 西南-贵阳一 Pangu-CV-ObjectDetection-N-2.1.0 2024年12月发布的版本,支持全量微调、在线推理。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。
购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。 配额限制 盘古大模型服务的配额限制详见表2。 表2 配额限制 资源类型 默认配额限制 是否支持调整 模型实例 ModelArts Studio平台上,单个用户最多可创建和管理2000个模型实例。
数值越高,表明模型在检测正类样本时的准确性越高。 召回率 召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。数值越高,表明模型在检测正类样本时的全面性越高。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。
模型支持区域 模型名称 说明 西南-贵阳一 Pangu-NLP-BI-4K-20241130 2024年11月发布的版本,支持4K序列长度推理,支持4个推理单元部署。
场景 选择模型场景,分为“全球中期天气要素预测”、“全球中期降水预测”、“全球中期海洋智能预测”、“区域中期海洋智能预测”、“全球中期海洋生态智能预测”、“全球中期海浪智能预测”。 全球中期天气要素预测模型可以选择1个或者多个模型进行部署。
Pangu-AI4S-Ocean_Regional_24h-20241130 2024年11月发布的版本,用于区域海洋基础要素预测,1个训练单元起训及1个实例部署。
QA对格式支持:jsonl 物体检测 图片格式支持:jpg、jpeg、png、bmp 标注格式支持:xml 图像分类 图片格式支持:jpg、jpeg、png、bmp 标注格式支持:txt 异常检测 图片格式支持:jpg、jpeg、png、bmp 标注格式支持:txt 语义分割 jpg
模型支持区域 模型名称 说明 西南-贵阳一 Pangu-Predict-Table-Cla-2.0.0 2024年12月发布的版本,支持分析历史数据中的特征与类别的关系,学习出一种映射规则或函数,然后应用这个规则对未来未知的数据点进行分类。
表1 训练CV大模型数据集类型要求 基模型 训练场景 文件内容 文件格式 盘古-CV-物体检测-N 微调 图片+检测标注 图片+xml 训练CV大模型所需数据量 初期启动训练时,每种模型类别先提供1000张已标注的图片数据进行训练,后续根据验证结果再动态提供数据迭代。
表3 科学计算大模型区域中期海洋智能预测微调参数说明 参数分类 参数名称 参数说明 训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“科学计算大模型”。 场景 选择“区域中期海洋智能预测”。 训练类型 选择“微调”。
表1 预测大模型与数据集类型对应关系 基模型 模型分类 数据集内容 文件格式 预测大模型 时序预测模型 时序数据 csv 回归模型 异常检测模型 分类模型 回归分类数据 csv 训练预测大模型所需数据量 训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。
事件检测 视频+json 数据源样本为avi、mp4格式,标注文件为json格式。必须包含两个及以上后缀名字为avi或者mp4的文件。 每个视频时长要大于128s,FPS>=10,且测试集训练集都要有视频。
通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。
敏感词过滤 对文本中涉及黄色、暴力、政治等敏感数据进行自动检测和过滤。 文本长度过滤 按照设置的文本长度,保留长度范围内的数据进行。 冗余信息过滤 按照段落粒度,删除文本中的冗余信息,不改变数据条目。 例如目录封面、图注表注、标注说明、尾部信息、冗余段落和参考文献等。
表1 盘古NLP大模型规格 模型支持区域 模型名称 可处理最大上下文长度 可处理最大输出长度 说明 西南-贵阳一 Pangu-NLP-N1-Chat-32K-20241130 32K 4K 2024年11月发布的版本,支持8K序列长度训练,4K/32K序列长度推理。
在“发布到AI Gallery”页面填写AI Gallery资产名称与描述,选择可订阅区域约束与可看范围,单击“确定”,发布数据资产至AI Gallery。 数据资产列表页将显示发布数据资产的状态: 如果状态为“发布中”,表示该资产正在同步至AI Gallery,请耐心等待。
依据页面提示对评估效果区域进行评测打分,全部数据评测完成后单击“提交”。 图1 人工评测示例 在“人工测评”页面,评测任务的状态将显示为“已完成”,单击操作列“评测报告”查看模型评测结果。 父主题: 评测NLP大模型
Agent开发平台应用场景 当前,基于Agent开发平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。
表1 科学计算大模型训练数据要求 模型类别 特征要求 水平分辨率要求 区域范围要求 时间要求 数据获取方式 气象/降水模型 需包含4个表面层特征(10m u风、10m v风、2米温度、海平面气压),13高空层次(1000、925、850、700、600、500、400、300、250
基模型算法池 对于异常检测模型:从预定义的算法池中选择用于训练模型的算法,算法包括:["knn", "iforest", "loda", "oc"],其中: knn表示k最近邻算法。 iforest表示孤立森林算法。 loda表示Loda算法。 oc表示单类支持向量机算法。