检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
连接开发环境时报错Missing GLIBC,Missing required dependencies 使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题 使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配
VS Code连接开发环境失败时的排查方法 VS Code连接开发环境失败时,请参考以下步骤进行基础排查。 网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh
如果首次发布算法,则“发布方式”选择“创建新资产”,填写“资产标题”、选择发布区域等信息。 如果是为了更新已发布的算法版本,则“发布方式”选择“添加资产版本”,在“资产标题”下拉框中选择已有资产标题,填写“资产版本”。
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
Standard资源池节点故障定位 节点故障定位 对于Standard资源池,ModelArts平台在识别到节点故障后,通过给K8S节点增加污点的方式(taint)将节点隔离避免新作业调度到该节点而受到影响,并且使本次作业不受污点影响。当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
约束限制 端到端服务运维只支持在线服务,因为推理的批量服务和边缘服务无CES监控数据,不支持完整的端到端服务运维设置。 实施步骤 以出行场景的司乘安全算法为例,介绍使用ModelArts进行流程化服务部署和更新、自动化服务运维和监控的实现步骤。
取值包含: real-time:在线服务 batch:批量服务 edge: 边缘服务 status 否 String 服务状态,默认不过滤服务状态,取值包含: running:运行中,服务正常运行。 deploying:部署中,服务正在部署,包含打镜像和调度资源部署。
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
15:图像中目标框的边缘化程度与训练数据集的特征分布存在较大偏移。 16:图像中目标框的亮度与训练数据集的特征分布存在较大偏移。 17:图像中目标框的清晰度与训练数据集的特征分布存在较大偏移。 18:图像中目标框的堆叠程度与训练数据集的特征分布存在较大偏移。
msprobe API预检 msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/data 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。