检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Upsert Kafka 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。Upsert Kafka 连接器支持以upsert方式从Kafka topic中读取数据并将数据写入Kafka
设置多版本备份数据保留周期 功能描述 在DLI数据多版本功能开启后,备份数据默认保留7天,您可以通过配置系统参数“dli.multi.version.retention.days”调整保留周期。保留周期外的多版本数据后续在执行insert overwrite或者truncate语
如何设置安全组规则,请参见《虚拟私有云用户指南》中“安全组”章节。 如果使用MRS Doris,请在增强型跨源的主机信息中添加MRS集群所有节点的主机ip信息。 详细操作请参考《数据湖探索用户指南》中的“修改主机信息”章节描述。 集群未启用Kerberos认证(普通模式) 使用ad
前提条件 配置前,请先购买OBS桶或并行文件系统。大数据场景推荐使用并行文件系统,并行文件系统(Parallel File System)是对象存储服务(Object Storage Service,OBS)提供的一种经过优化的高性能文件系统,提供毫秒级别访问时延,以及TB/s级别带
ID)/SK(Secret Access Key)加密调用请求。推荐使用AK/SK认证,其安全性比Token认证更高。 Token认证 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。
消息通知服务(Simple Message Notification,简称SMN)为DLI提供可靠的、可扩展的、海量的消息处理服务,它大大简化系统耦合,能够根据用户的需求,向订阅终端主动推送消息。可用于连接云服务、向多个协议推送消息以及集成在产生或使用通知的任何其他应用程序等场景。S
作业管理页面。Spark作业管理页面显示所有的Spark作业,作业数量较多时,系统分页显示,您可以查看任何状态下的作业。 表1 作业管理参数 参数 参数说明 作业ID 所提交Spark作业的ID,由系统默认生成。 名称 所提交Spark作业的名称。 队列 所提交Spark作业所在的队列。
配置样例 计费模式 选择弹性资源池计费模式。 按需计费 区域 选择弹性资源池所在区域。 华东-上海二 项目 每个区域默认对应一个项目,由系统预置。 系统默认项目 名称 弹性资源池名称。 dli_resource_pool 规格 选择弹性资源池规格。 标准版 CU范围 弹性资源池最大最小CU范围。
DLI提供多版本功能,用于数据的备份与恢复。开启多版本功能后,在进行删除或修改表数据时(insert overwrite或者truncate操作),系统会自动备份历史数据并保留一定时间,后续您可以对保留周期内的数据进行快速恢复,避免因误操作丢失数据。其他多版本SQL语法请参考多版本备份恢复数据。
DLI将Flink作业的输出数据以upsert的模式输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka是线下集群,需要通过增强型跨源连
Upsert Kafka源表 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 作为 source,upsert-kafka 连接器生产changel
DLI通过Kafka结果表将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 确保已创建kafka集群。 该场景作业需要
创建Hive Catalog 简介 Catalog提供了元数据信息,例如数据库、表、分区、视图以及数据库或其他外部系统中存储的函数和信息。 数据处理最关键的方面之一是管理元数据。 元数据可以是临时的,例如临时表、或者通过TableEnvironment注册的UDF。 元数据也可以是持久化的,例如Hive
流生态作业开发指引 流生态系统基于Flink和Spark双引擎,完全兼容Flink/Storm/Spark开源社区版本接口,并且在此基础上做了特性增强和性能提升,为用户提供易用、低时延、高吞吐的数据湖探索。 数据湖探索的流生态开发包括云服务生态、开源生态和自拓展生态: 云服务生态
区列的字段数据。分区表查询时需要指定分区字段,导致查询不到表数据。 问题根因 DLI分区内表在导入数据时,如果文件数据没有包含分区字段,则系统会默认指定分区值“__HIVE_DEFAULT_PARTITION__”,当前Spark判断分区为空时,则会直接返回null,不返回具体的数据。
基于文件的权限管理。 高性能 性能 基于软硬件一体化的深度垂直优化。 大数据开源版本性能。 跨源分析 支持多种数据格式,云上多种数据源、ECS自建数据库以及线下数据库,数据无需搬迁,即可实现对云上多个数据源进行分析,构建企业的统一视图,帮助企业快速完成业务创新和数据价值探索。
53),星期天是一周的第一天,与%X配合使用 %v 星期(01 .. 53), 第一条为星期一,与%X配合使用 %W 周几(Sunday .. Saturday) %w 本周的第几天(0 .. 6),星期天是一周的第一天 %X 年份,数字,4位,第一天为星期日 %x 年份,数字,4位,第一天为星期一
使用DLI提交SQL作业查询OBS数据 场景描述 DLI可以查询存储在OBS中的数据,本节操作介绍使用DLI提交SQL作业查询OBS数据的操作步骤。 本例新建“sampledata.csv”文件上传OBS桶,并新建弹性资源池队列,使用DLI创建数据库和表,使用DLI提供的SQL编辑器查询表的1000条数据。
进入Spark作业编辑页面,页面会提示系统将创建DLI临时数据桶。该桶用于存储使用DLI服务产生的临时数据,例如:作业日志、作业结果等。如果不创建该桶,将无法查看作业日志。可以通过配置生命周期规则实现定时删除OBS桶中的对象或者定时转换对象的存储类别。桶名称为系统默认。 如果不需要创建DLI
创建source流从Kafka获取数据,作为作业的输入数据。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka是线下集群,需要通过增强型跨源连