检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题8:使用autoAWQ进行qwen-7b模型量化时报错TypeError: 'NoneType'
停止后会被保留。可以自定义磁盘空间,如果需要存储数据集、模型等大型文件,建议申请规格300GB+。存储支持在线按需扩容。 图2 自定义存储配置 使用Notebook将OBS数据导入云硬盘EVS 打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Qwen/Qwen-VL-Chat为例: huggingface-cli download --resume-download
转包周期”。 在弹出的“转包周期”页面,确认无误后单击“确定”。 图1 转包周期 选择弹性集群的购买时长,判断是否勾选“自动续费”,确认预计到期时间和配置费用后单击“去支付”。 进入支付页面,选择支付方式,确认付款,支付订单后即可完成按需转包年/包月。
语音起止点标签专用内置属性:语音的结束时间,格式“hh:mm:ss.SSS”(其中hh表示小时,mm表示分钟,ss表示秒,SSS表示毫秒)。 @modelarts:feature Object 物体检测标签专用内置属性:形状特征,类型为List。以图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x,
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Qwen/Qwen-VL-Chat为例: huggingface-cli download --resume-download
的权重转换操作和数据处理操作。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、MBS、T
除了人工标注外,ModelArts还提供了智能标注功能,快速完成数据标注,为您节省70%以上的标注时间。智能标注是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。 目前只有“图像分类”和“物体检测”类型的数据集支持智能标注功能。 团队标注 数据标
动进入JupyterLab界面,打开Terminal。 在Notebook中制作自定义镜像 首先配置鉴权信息,指定profile,根据提示输入账号、用户名及密码。鉴权更多信息请查看配置登录信息。 ma-cli configure --auth PWD -P xxx 执行env|grep
“导入路径”:数据存储的OBS路径。 “数据标注状态”:已标注。 “高级特征选项 ”:默认关闭,可通过勾选高级选项提供增强功能。 如“按标签导入”:系统将自动获取此数据集的标签,您可以单击“添加标签”添加相应的标签。此字段为可选字段,您也可以在导入数据集后,在标注数据操作时,添加或删除标签。
选择资源的续费时长,判断是否勾选“统一到期日”,将资源的到期时间统一到各个月的某一天(详细介绍请参见统一包年/包月资源的到期日)。确认配置费用后单击“去支付”。 进入支付页面,选择支付方式,确认付款,支付订单后即可完成续费。 统一包年/包月资源的到期日 如果您持有多台到期日不
"Your Name" && \ 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 若无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
"Your Name" && \ 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
"Your Name" && \ 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
AlgorithmMetadata object 算法的元数据,描述算法基本信息。 job_config 否 AlgorithmJobConfig object 算法配置信息,如启动文件等。 resource_requirements 否 Array of ResourceRequirement objects
status PoolStatus object 资源池的状态信息。 表4 PoolMetadata 参数 参数类型 描述 name String 系统自动生成的pool名称,相当于pool ID。 creationTimestamp String 时间戳,例如"2021-11-01T03:49:41Z"。
企业项目名称。 name String 工作空间名称。 description String 工作空间描述。 id String 工作空间ID,系统生成的32位UUID,不带橫线。默认的工作空间id为'0'。 status String 工作空间状态。 CREATE_FAILED:创建失败。
AlgorithmMetadata object 算法的元数据,描述算法基本信息。 job_config 否 AlgorithmJobConfig object 算法配置信息,如启动文件等。 resource_requirements 否 Array of ResourceRequirement objects
status PoolStatus object 资源池的状态信息。 表5 PoolMetadata 参数 参数类型 描述 name String 系统自动生成的pool名称,相当于pool ID。 creationTimestamp String 时间戳,例如"2021-11-01T03:49:41Z"。