检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
CV大模型训练流程与选择建议 CV大模型训练流程介绍 目前,CV大模型支持微调训练。 微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估
具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。
训练目的 训练数据 模型效果 应用场景举例 预训练 关注通用性:预训练旨在让模型学习广泛的通用知识,建立词汇、句法和语义的基础理解。通过大规模的通用数据训练,模型可以掌握丰富的语言模式,如语言结构、词义关系和常见的句型。 使用大规模通用数据:通常使用海量的无监督数据(如文本语料库
temperature 否 Float 用于控制生成文本的多样性和创造力。 取值接近0表示最低的随机性,1表示最高的随机性。一般来说,temperature越低,适合完成确定性的任务。temperature越高,如0.9,适合完成创造性的任务。 temperature参数可以影响
科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
功能类型 使用限制 数据工程-数据格式要求 ModelArts Studio平台支持接入的数据需要满足格式要求,包括文件格式、单个文件大小、所有文本大小以及文件数量等,请参考《用户指南》“使用数据工程构建数据集 > 数据集格式要求”。 模型开发-训练、评测最小数据量要求 使用ModelArts
NLP大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空。 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
预测大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空。 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
CV大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空。 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number
过拟合。 数据配置 训练数据 选择训练模型所需的数据集。 验证数据 若选择“从训练数据拆分”,则需进一步配置数据拆分比例。 若选择“从已有数据导入”,则需选择导入的数据集。 资源配置 训练单元 创建当前训练任务所需的训练单元数量。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状
根据服务实际消耗量计费,系统将每小时自动扣费。 盘古大模型的计费模式见表1。 表1 计费模式表 计费类别 计费项 计费模式 计费量纲 付费方式 计费周期 模型服务 模型订阅服务 包周期计费 套 预付费,按照订单的购买周期结算 1个月~1年 数据服务 数据智算服务 按需计费 智算单元
"content": "介绍下长江,以及长江中典型的鱼类" } ], "temperature": 0.9, "max_tokens": 600 } 父主题: 大模型使用类问题
异常的Loss曲线:平缓且保持高位 Loss曲线异常抖动:Loss曲线异常抖动的原因可能是由于训练数据质量差,比如数据存在噪声或者分布不均衡,导致训练过程不稳定。你可以尝试提升数据质量的方式来解决。 图5 异常的Loss曲线:异常抖动 父主题: 大模型微调训练类问题
开发盘古预测大模型 使用数据工程构建预测大模型数据集 训练预测大模型 部署预测大模型
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型
开发盘古CV大模型 使用数据工程构建CV大模型数据集 训练CV大模型 部署CV大模型
模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 大模型微调训练类问题
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
训练类型 选择“微调”。 基础模型 选择所需微调的基础模型。 训练参数 数据集 训练数据集。 自定义L1预训练模型目录 自定义预训练模型所在的OBS路径。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型
NLP大模型自动评测指标说明-使用评测模板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测)