检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
具备。 评估作业员 拥有数据工程数据评估-评估作业模块的所有权限,其余角色不具备。 数据导入员 拥有数据工程数据获取-数据导入模块的所有权限,其余角色不具备。 数据加工员 拥有数据工程数据加工模块的所有权限,其余角色不具备。 数据发布员 拥有数据工程数据发布模块的所有权限,其余角色不具备。
为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments/{deployment_id}/caltokens
用,快速体验智能化应用的便捷性。 平台提供导入知识功能,支持用户存储和管理数据,并与AI应用进行互动。支持多种格式的本地文档(如docx、pptx、pdf等),方便导入至知识,为Agent应用提供个性化数据支持。 平台还提供全链路信息观测和调试工具,支持开发者深入分析Agent执
体的json字段中提取出所需的数据。 评测配置 评测类型 选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。 单个评测集:由用户指定评测指标(F1分数、准去率、BLEU、Rouge)并上传评测数据集进行评测。 选择“单个评测集”时需要上传待评测数据集。
数据资产:数据资产是指用户在平台上发布的所有数据集。这些数据集会被存储在数据资产中,用户可以随时查看数据集的详细信息,如数据格式、大小、配比比例等,同时平台会自动记录每个数据集的操作历史,例如创建、发布及上线等过程。为了进一步简化管理,平台还支持数据集的删除功能,使用户能够对数据集进行灵活管理和调整。在模型训
按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型
Anom-2.0.0 2024年12月发布的版本,支持识别数据集中不符合预期模式或行为的数据点。 Pangu-Predict-Table-TimSeries-2.0.0 2024年12月发布的版本,支持根据历史时间序列数据来预测未来的值,广泛应用于金融、销售预测、天气预报、能源消耗预测等领域。
确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细
逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。 与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的专业大模型,以满足不同场景和需求。以
于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
油气行业:进行地质分层,例如基于地质数据,对不同地层进行分类,识别储层和非储层,提高勘探和开发效率。进行岩性识别,例如对不同岩石类型进行分类,帮助识别岩石的性质和特征,指导钻井和开采。进行流体识别,例如根据测井数据,识别储层中的油、气、水等流体类型。 2024年12月发布的版本,支持分析历史数据中的特征与
合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 大模型微调训练类问题
模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。
单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案