检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行install.sh文件,来安装依赖以及下载完整代码。命令如下: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会下载Megatro
或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会下载Megatro
OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:
kpoints中最大迭代次数(iter_000xxxx)Megatron格式权重文件。 lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持
th kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
推理部署使用的服务框架是vLLM。vLLM支持v0.5.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。
本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会下载Megatro
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下: cd
由于基础镜像内需要安装固定版本依赖包,若直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下: cd
输出转换后权重文件保存路径: 权重转换完成后,在/home/ma-user/work/llm_train/processed_for_ma_input/llama2-13b/converted_weights_TP${TP}PP${PP}目录下查看转换后的权重文件。 Megatron转HuggingFace参数说明
为了便于用户快速进行迁移调优,降低调优门槛,ModelArts提供了MA-Adivisor性能自动诊断工具。用户采集性能profiling数据后,可通过该工具自动扫描profiling数据,工具分析完数据后会给出可能的性能问题点及调优建议,用户可以根据调优建议做相应的修改适配。目前该工具对CV类模型给出的调优建
重新启动镜像激活SFS盘中的虚拟环境 保存并共享虚拟环境 前提条件 创建一个Notebook,“资源类型”选择“专属资源池”,“存储配置”选择“SFS弹性文件服务器”,打开terminal。 创建新的虚拟环境并保存到SFS目录 创建新的conda虚拟环境。 # shell conda create
训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要
训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要
采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信息熵上限近似模型的树搜索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构化)数据中,自动学
续费简介 包年/包月专属资源池到期后会影响ModelArts正常使用。如果您想继续使用,需要在指定的时间内为资源池续费,否则资源会自动释放,数据丢失且不可恢复。 续费操作仅适用于包年/包月专属资源池,按需计费专属资源池不需要续费,只需要保证账户余额充足即可。 专属资源池在到期前续费
ux上安装配置Grafana和在Notebook上安装配置Grafana三种方式,请您根据实际情况选择。 配置Grafana数据源 配置仪表盘查看指标数据 父主题: ModelArts Standard资源监控
kpoints中最大迭代次数(iter_000xxxx)Megatron格式权重文件。 lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持