检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方式完成目的。ModelArts的SDK是对ModelArts Standard提供的REST API进行的Python封装,简化用户的开发工作。具体操作和SDK详细描述,请参见《SDK参考》。 除此之外,在ModelArts Standard的Notebook中编写代码时,也可直接调用ModelArts
在“未标注”页签添加:单击页面中标签集右侧的加号,然后在弹出的“新增标签”页中,添加标签名称,选择标签颜色,单击“确定”完成标签的新增。 图5 添加标签(1) 在“已标注”页签添加:单击页面中标签集右侧的加号,然后在弹出的“新增标签”页中,添加标签名称,选择标签颜色,单击“确定”完成标签的新增。 图6 添加标签(2)
orch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表
在本地PC的hosts文件中配置域名和IP地址的对应关系。 三、网络代理设置 如果用户使用的网络有代理设置要求,请检查代理配置是否正确。也可以使用手机热点网络连接进行测试排查。 检查代理配置是否正确。 图2 PyCharm网络代理设置 四、AK/SK不正确 获取到的AK/SK信
限请修改。 连接时如果报错密钥无权限,排查密钥是否为自己的密钥(可能使用了重名密钥),请更换密钥后重新连接实例。 本地排查 检查配置是否正确。 打开config文件进行检查:Host必须放在每组配置的第一行,作为每组配置的唯一ID。 HOST remote-dev hostname
限请修改。 连接时如果报错密钥无权限,排查密钥是否为自己的密钥(可能使用了重名密钥),请更换密钥后重新连接实例。 本地排查 检查配置是否正确。 打开config文件进行检查:Host必须放在每组配置的第一行,作为每组配置的唯一ID。 HOST remote-dev hostname
保云基础架构的可用性。而云服务客户则需要负责保护自己的数据和应用程序,以及遵守相关的合规性要求。 具体而言,云服务提供商应该提供以下服务和功能: 建立和维护安全的基础设施,包括网络、服务器和存储设备等。 提供安全的底层基础平台,保证底层环境的运行时安全。 提供安全的身份验证和访问
选择模型及版本 “我的模型”。您可以根据实际需求选择您的模型。您需要在目标模型的左侧单击下拉三角标,选择合适的版本。您的模型导入参见创建模型。 “我的订阅”。您可以根据实际需求选择AI Gallery中已订阅的模型。您需要在目标模型的左侧单击下拉三角标,选择合适的版本。查找模型参见从Gallery订阅模型。
团队标注任务创建成功后,团队成员收到标注任务的邮件。 图5 任务邮件 单击任务邮件中的标注任务地址,跳转至ModelArts控制台的“数据准备>数据标注 > 我参与的”页面。如果未登录控制台,请先登录。 在“我参与的”页签下,可查看您的标注任务。 图6 标注任务 数据标注访问地址
未标注:仅导入标注对象(指待标注的图片,文本等),不导入标注内容(指标注结果信息)。 已标注:同时导入标注对象和标注内容,当前“自由格式”的数据集不支持导入标注内容。 为了确保能够正确读取标注内容,要求用户严格按照规范存放数据: 导入方式选择目录时,需要用户选择“标注格式”,并按照标注格式的要求存放数据,详细规范请参见标注格式章节。
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10
s在同一区域。 数据集要求 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。 为
从AI Gallery下载到桶里的数据集,再在ModelArts里创建数据集,显示样本数为0 首先需要确认从AI Gallery下载的数据格式,比如压缩包、excel文件等会被忽略,支持格式详情: 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本
动态分档模型转换(可选) 如果迁移的模型有多个shape档位的需求,可以通过如下方式对模型进行分档转换。 动态分档是指将模型输入的某一维或者某几维设置为“动态”可变,但是需要提前设置可变维度的“档位”范围。即转换得到的模型能够在指定的动态轴上使用预设的几种shape(保证模型支持的shape),相
ModelArts开发环境提供的预置镜像主要包含: 常用预置包:基于标准的Conda环境,预置了常用的AI引擎,常用的数据分析软件包,例如Pandas,Numpy等,常用的工具软件,例如cuda,cudnn等,满足AI开发常用需求。 预置Conda环境:每个预置镜像都会创建一个相对应的Conda环
Turbo中单击右上角的“创建文件系统”,如果能正常打开页面,表示当前用户具备SFS的操作权限。 验证ECS权限。 在左上角的服务列表中,选择ECS服务,进入ECS管理控制台。 在ECS管理控制台,单击右上角的“购买弹性云服务器”,如果能正常打开页面,表示当前用户具备ECS的操作权限。 验证VPC权限。
指定每个设备的训练批次大小 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配
pipeline的主要作用是将onnx模型进行一系列编排,并在onnx Runtime上按照编排顺序执行。因此,需要将转换得到的mindir模型按照相同的逻辑进行编排,并在MindSpore Lite上执行。只需要将原始onnx的pipeline中涉及到onnx模型初始化及推理的接口替换为MindSpore
发空间中运行,发现镜像中可能存在的问题。 表10 参数说明 参数名 参数类型 是否必选 参数说明 -swr / --swr-path String 是 需要调试的镜像的SWR路径。 -r / --region String 是 需要调试的镜像所在的区域。 -s / --service
的完整代码示例,供用户学习参考。 训练流程简述 相比于DP,DDP能够启动多进程进行运算,从而大幅度提升计算资源的利用率。可以基于torch.distributed实现真正的分布式计算,具体的原理此处不再赘述。大致的流程如下: 初始化进程组。 创建分布式并行模型,每个进程都会有相同的模型和参数。