检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集版本名称。 with_column_header Boolean 发布的CSV文件的第一行是否为列名,对于表格数据集有效。可选值如下: true:发布的CSV文件的第一行是列名 false:发布的CSV文件的第一行不是列名 表5 LabelStats 参数 参数类型 描述 attributes
一个自由灵活的AI应用创建方式,您可以基于AI Gallery上提供的基础能力,发挥您的创造力,通过自定义代码的形式,自由地构建出您需要的AI应用形态。 准备AI应用运行文件“app.py” AI应用运行文件“app.py”的代码示例如下。其中,加粗的代码为必须保留的内容。 import
智能标注:在标注一定量的数据情况下,用户可以通过启动智能标注任务对数据进行自动标注,提高标注的效率。 团队标注:对于大批量的数据,用户可以通过创建团队标注作业,进行多人协同标注。 人工标注 对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片
准备数据 自动学习的每个项目对数据有哪些要求? 创建预测分析自动学习项目时,对训练数据有什么要求? 使用从OBS选择的数据创建表格数据集如何处理Schema信息? 物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 父主题: Standard自动学习
将Notebook的Conda环境迁移到SFS磁盘 本文介绍了如何将Notebook的Conda环境迁移到SFS磁盘上。这样重启Notebook实例后,Conda环境不会丢失。 步骤如下: 创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境
业启动后会下载至后台,可能会有下载失败的风险。建议训练代码目录大小小于或等于50MB。 代码目录路径中的启动文件 代码目录路径中的启动文件作为训练启动的入口,当前只支持python格式。预置框架启动文件的启动流程说明请参见预置框架启动文件的启动流程说明。 训练输入路径参数 训练数
iffusers框架用于推理的详细过程。完成本方案的部署,需要先联系您所在企业的华为方技术支持购买DevServer资源。 本方案新增了300IDUO的支持。 本方案目前仅适用于企业客户。 资源规格要求 推理部署推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend
分页查询到的团队标注任务列表。 表4 WorkforceTask 参数 参数类型 描述 auto_sync_dataset Boolean 团队标注任务的标注结果是否自动同步至数据集。可选值如下: true:团队标注任务的标注结果自动同步至数据集 false:团队标注任务的标注结果不自动同步至数据集
strings 导出的样本ID列表。 search_conditions Array of SearchCondition objects 导出的筛选条件,多个条件之间是或(OR)关系。 train_sample_ratio String 指定发布版本时训练集-验证集的切分比例,默认为1
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。 搜索算法配置 ModelArts内置三种超参搜索算法,用户可以根据实际情况选择对应的算法,支持多选。对应的算法和参数解析请参考以下: ba
ch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍 ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表
outputs 节点的输出列表 否 AbstractOutput或者list[AbstractOutput] properties 节点的属性信息 否 dict policy 节点的执行策略,主要包含节点调度运行的时间间隔、节点执行的超时时间、以及节点执行是否跳过的相关配置 否 StepPolicy
error_code String 操作失败的错误码。 error_msg String 操作失败的错误信息。 success Boolean 操作是否执行成功。可选值如下: true:执行成功 false:执行失败 请求示例 按标签名称删除标签及仅包含此标签的文件 DELETE https:
抽象处理。因此,与模型前向运算相关的所有源代码都被直接复制粘贴到同一个文件中,而不是调用某些抽象提取出的模块化库。Diffusers的这种设计原则的好处是代码简单易用、对代码贡献者友好。然而,这种反软件结构化的设计也有明显的缺点。由于缺乏统一的模块化库,对于昇腾适配而言变得更加复
在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在昇腾场景上,算子需要指定具体的shape信息,并且在模型转换的编译阶段完
Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 ModelArts自
orch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表
由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 标注作业支持的数据类型 对于不同类型的数据集,用户
据集进行的。为了规范对数据集的使用,适配各个使用场景,同时兼顾数据集管理的灵活性,本文档描述数据集管理的接口和描述规范——Manifest文件。 Manifest文件中定义了标注对象和标注内容的对应关系。Manifest文件中也可以只有原始文件信息,没有标注信息,如生成的未标注的数据集。