检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/model/chatglm3-6b。 --tensor-parallel-size:并行卡数。 --hostname:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
vscode-server-linux-x64.tar.gz -C /home/ma-user/.vscode-server/bin/$commitId --strip=1 chmod 750 -R /home/ma-user/.vscode-server/bin/$commitId 关闭VS Code,
方式二:使用AutoAWQ量化工具进行量化。 1、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers 4.42以上 python examples/quantize
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
annotations object 资源池的注释信息。 表5 annotations 参数 是否必选 参数类型 描述 os.modelarts/description 否 String 资源池描述信息,用于说明资源池用于某种指定场景。不能包含特殊字符!<>=&"'。 os.modelarts/order
ma-cli支持的命令 命令 命令详情 configure ma-cli鉴权命令,支持用户名密码、AK/SK image ModelArts镜像构建、镜像注册、查询已注册镜像信息等 obs-copy 本地和OBS文件/文件夹间的相互复制 ma-job ModelArts训练作业管理,包含作业提交、资源查询等
1-7ae870dae93a, 训练作业为:9f322d5a-b1d2-4370-94df-5a87de27d36e node_ip 容器所属的节点IP值。 container_id 容器ID。 cid 集群ID。 container_name 容器名称。 project_id 用户所属的账号的project
type 否 String 参数的类型,枚举值如下: str:字符串 int:整型 bool:布尔类型 float:浮点型 description 否 String Workflow工作流配置参数的描述。 example 否 Object Workflow工作流配置参数的样例。
lm-evaluation-harness git checkout 383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args
lm-evaluation-harness git checkout 383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args
服务名称,支持1-64位可见字符(含中文),只能以英文大小写字母或者中文字符开头,名称可以包含字母、中文、数字、中划线、下划线。 description 否 String 服务备注,默认为空,不超过100个字符。 infer_type 否 String 推理方式,取值为real-t
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
发布。 数据校验:对您的数据集的数据进行校验,是否存在数据异常。 声音分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的
service结构 参数 参数类型 描述 service_id String 服务ID。 service_name String 服务名称。 description String 服务描述。 tenant String 服务归属租户。 project String 服务归属项目。 owner String
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut