检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。
操作工作流:启动、停止、重试、复制、删除工作流。 查看运行记录:查看工作流历史运行的参数以及状态记录。 如何运行一条工作流,请您参考运行第一条Workflow。 Workflow的构成 工作流是对一个有向无环图的描述。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至ORIGINAL_HF_WEIGHT的目录中。
图19 “dropdown”,“input”,“slider”的表单样式 图20 创建“dropdown”类型的表单 图21 删除表单 资源监控 在使用过程中,如果想了解资源使用情况,可在右侧区域选择“Resource Monitor”,展示“CPU使用率”和“内存使用率”。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至ORIGINAL_HF_WEIGHT的目录中。
deletion_reasons Array of strings 样本的删除原因,用于医疗。 hard_details Map<String,HardDetail> 疑难详情,包括:疑难描述,疑难原因,疑难建议。
deletion_reasons Array of strings 样本的删除原因,用于医疗。 hard_details Map<String,HardDetail> 疑难详情,包括:疑难描述,疑难原因,疑难建议。
注意:样例为4机部署配置,如果是2机部署则需要删除多余的配置,仅保留2机16卡的配置。 设置rank_table_file.json文件权限。进入rank_table_file.json文件存放目录${path-to-file},执行如下命令。
find / -name attention.py find / -name attention_processor.py 图3 查找diffusers源码包位置 找到具体位置后可以cp替换,替换前可对diffusers原始文件做备份,如果没有备份则可以通过删除diffusers包重新安装的方式获取原始文件
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。
每层构建的时候都尽量把tar包等中间态文件删除,保证最终镜像更小,清理缓存的方法可参考:conda clean。
故障、删除状态的在线服务,无法在云监控中查看其监控指标。当在线服务再次启动或恢复后,即可正常查看。 对接云监控之前,用户无法查看到未对接资源的监控数据。具体操作,请参见设置告警规则。 登录管理控制台。
如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注前要保证当前数据集不存在正在进行中的智能标注任务。 操作步骤 调用认证鉴权接口获取用户的Token。
表6 训练作业创建成功响应说明 参数 类型 描述 TrainingJob Object 训练对象,该对象包含job_id等属性,对训练作业的查询、更新、删除等操作时,可通过job_instance.job_id获取训练作业ID。