检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ResourceFlavorLabel object 资源规格的标签信息。 表7 ResourceFlavorLabel 参数 参数类型 描述 os.modelarts/scope String 资源规格对应的作业类型。 表8 ResourceFlavorSpec 参数 参数类型 描述
基于MindSpore Lite的模型转换 迁移推理业务的整体流程如下: 模型准备 转换关键参数准备 模型转换 推理应用适配 主要通过MindSpore Lite(简称MSLite)进行模型的转换,进一步通过MindSpore Runtime支持昇腾后端的能力来将推理业务运行到昇腾设备上。
ModelArts Standard使用流程 本章节旨在帮助您了解ModelArts Standard的基本使用方法,帮助您快速上手ModelArts服务。 面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训
0606190017-b881580 镜像发布到SWR,从SWR拉取 固件驱动:23.0.5 CANN:cann_8.0.rc2 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0 FrameworkPTAdapter:6.0.RC2 如果用到CCE,版本要求是CCE
查询支持的服务部署规格列表。 查询专属资源池列表 查询专属资源池列表。 资源管理接口 表13 配置管理 API 说明 查询OS的配置参数 获取ModelArts OS服务的配置参数,如网络网段,用户资源配额等。 表14 插件模板管理 API 说明 查询插件模板 获取指定插件模板的详细信息。
nci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
0727152329-0f2c29a 镜像发布到SWR,从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc2 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0 MindSpore:MindSpore 2.3.0 FrameworkPTAdapter:6
0829092203-4ccf328 镜像发布到SWR,从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch_2.2.0 MindSpore:MindSpore 2.3.0
nci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
性能调优 性能测试 benchmark工具也可用于性能测试,其主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输
download_datasets.py的内容: import os import pandas as pd for idx, row in pd.read_csv('results_2M_val.csv').iterrows(): os.system(f"wget -O './dat
其中,加粗的字段需要根据实际值填写: “duration”为实例运行时长,以创建时间为起点计算,即“创建时间+duration > 当前时刻”时,系统会自动停止实例。 “type”为自定停止类别,默认为timing。 返回状态码为“200”表示标注成功,响应Body如下所示: { "create_at":
开发Workflow的核心概念介绍 Workflow Workflow是一个有向无环图(Directed Acyclic Graph,DAG),由节点和节点之间的关系描述组成。 图1 Workflow介绍 节点与节点之间的依赖关系由单箭头的线段来表示,依赖关系决定了节点的执行顺序
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 不建议把数据、代码放到容器镜像里。因为对应内容应该是经常变动的,会导致频繁地容器镜像构建操作。