检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
删除ClickHouse表 本章节介绍删除ClickHouse表样例代码。 删除在创建ClickHouse表中创建的副本表和分布式表。 示例代片段参考如下: private void dropTable(String databaseName, String tableName,
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
过集群客户端进行HBase表的创建与查询操作指导。 HBase集群使用Hadoop和HBase组件提供一个稳定可靠、性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。
Zookeeper是一个开源的,高可靠的,分布式一致性协调服务。Zookeeper设计目标是用来解决那些复杂,易出错的分布式系统难以保证数据一致性的。不必开发专门的协同应用,十分适合高可用服务保持数据一致性。 背景信息 在使用客户端前,除主管理节点以外的客户端,需要下载并更新客户端配置文件。
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。 它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
务自研组件,提供长期的支持和演进。 普通版:主要依托开源组件的能力,融入了MRS服务自研、成熟稳定的特性和功能,带来性能及稳定性的提升。 LTS版 集群版本 MRS集群的版本,不同版本所包含的开源组件版本及功能特性可能不同,推荐选择最新版本。 版本详细包含的组件详细可参考MRS组件版本一览表。
写本地表,查询分布式表,提升写入和查询性能,保证写入和查询的数据一致性。 只有在去重诉求的场景下,可以使用分布式表插入,通过sharding key将要去重的数据转发到同一个shard,便于后续去重查询。 外部模块保证数据导入的幂等性。 ClickHouse不支持数据写入的事务保证。
Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩
HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在现有文件之后的添加操作。HDFS
HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在现有文件之后的添加操作。HDFS
Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩
ZooKeeper是一个开源的,高可靠的,分布式一致性协调服务。ZooKeeper设计目标是用来解决那些复杂,易出错的分布式系统难以保证数据一致性的。不必开发专门的协同应用,十分适合高可用服务保持数据一致性。 背景信息 在使用客户端前,除主管理节点以外的客户端,需要下载并更新客户端配置文件。
简介 Yarn是一个分布式的资源管理系统,用于提高分布式的集群环境下的资源利用率,这些资源包括内存、IO、网络、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原Map
基于Kafka的Word Count数据流统计案例 应用场景 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。
CF下的一个标签,可以在写入数据时任意添加,因此CF支持动态扩展,无需预先定义Column的数量和类型。HBase中表的列非常稀疏,不同行的列的个数和类型都可以不同。此外,每个CF都有独立的生存周期(TTL)。可以只对行上锁,对行的操作始终是原始的。 Column 与传统的数据库
简介 Yarn是一个分布式的资源管理系统,用于提高分布式的集群环境下的资源利用率,这些资源包括内存、IO、网络、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原Map