检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Kafka样例程序开发思路 场景说明 Kafka是一个分布式消息系统,在此系统上用户可以做一些消息的发布和订阅操作,假定用户要开发一个Producer,让其每秒向Kafka集群某Topic发送一条消息,另外还需要实现一个Consumer,订阅该Topic,实时消费该类消息。
Kafka样例程序开发思路 场景说明 Kafka是一个分布式消息系统,在此系统上您可以做一些消息的发布和订阅操作,假定用户要开发一个Producer,让其每秒向Kafka集群某Topic发送一条消息,另外还需要实现一个Consumer,订阅该Topic,实时消费该类消息。
Kafka样例程序开发思路 场景说明 Kafka是一个分布式消息系统,在此系统上可以做一些消息的发布和订阅操作,假定用户要开发一个Producer,让其每秒向Kafka集群某Topic发送一条消息,另外,还需要实现一个Consumer,订阅该Topic,实时消费该类消息。
Kafka样例程序开发思路 场景说明 Kafka是一个分布式消息系统,在此系统上用户可以做一些消息的发布和订阅操作,假定用户要开发一个Producer,让其每秒向Kafka集群某Topic发送一条消息,另外还需要实现一个Consumer,订阅该Topic,实时消费该类消息。
Presto应用开发简介 Presto简介 Presto是一种开源、分布式SQL查询引擎,用于对千兆字节至PB级大小的数据源进行交互式分析查询。 Presto主要特点如下: 多数据源:Presto可以支持Mysql,Hive,JMX等多种Connector。
Spark共享Yarn集群提供丰富的计算资源,将任务分布式的运行起来。Spark on Yarn分两种模式:Yarn Cluster和Yarn Client。 Yarn Cluster模式 运行框架如图1所示。
HBase基本原理 数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。
图2 Topology Storm有众多适用场景:实时分析、持续计算、分布式ETL等。
HDFS应用开发简介 HDFS简介 HDFS(Hadoop Distribute FileSystem)是一个适合运行在通用硬件之上,具备高度容错特性,支持高吞吐量数据访问的分布式文件系统,适合大规模数据集应用。 HDFS适用于如下场景。
HDFS应用开发简介 HDFS简介 HDFS(Hadoop Distribute File System)是一个适合运行在通用硬件之上,具备高度容错特性,支持高吞吐量数据访问的分布式文件系统,非常适合大规模数据集应用。
HDFS应用开发简介 HDFS简介 HDFS(Hadoop Distribute FileSystem)是一个适合运行在通用硬件之上,具备高度容错特性,支持高吞吐量数据访问的分布式文件系统,非常适合大规模数据集应用。
快速开发HDFS应用 HDFS(Hadoop Distribute FileSystem)是一个适合运行在通用硬件之上,具备高度容错特性,支持高吞吐量数据访问的分布式文件系统,非常适合大规模数据集应用。
HDFS应用开发简介 HDFS简介 HDFS(Hadoop Distribute File System)是一个适合运行在通用硬件之上,具备高度容错特性,支持高吞吐量数据访问的分布式文件系统,非常适合大规模数据集应用。
对系统的影响 当本地复制表在副本之间业务数据不一致时,会影响ClickHouse复制表数据的可靠性,造成数据差异,影响分布式表的查询结果。 可能原因 ClickHouse业务压力过大。 ClickHouse与ZooKeeper连接发生异常。
MemArtsCC基本原理 MemArtsCC是一款面向存算分离架构的分布式计算侧缓存系统,采用极轻量化的架构设计,部署在计算侧的集群中,通过智能预取远端对象存储上的数据提供高速缓存能力,从而来加速计算任务执行。
ClickHouse容量规划设计 为了能够更好的发挥ClickHouse分布式查询能力,在集群规划阶段需要合理设计集群数据分布存储。 当前ClickHouse能力为单机磁盘容量达到80%后会上报告警信息,磁盘容量达90%后集群会处于只读状态。
Hadoop集群完全使用开源Hadoop生态,采用Yarn管理集群资源,提供Hive、Spark离线大规模分布式数据存储和计算及进行海量数据分析与查询的能力。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
Flume基本原理 Flume是一个高可用、高可靠,分布式的海量日志采集、聚合和传输的系统。Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接收方(可定制)的能力。
Flume日志采集概述 Flume是一个分布式、可靠和高可用的海量日志聚合的系统。它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。支持在系统中定制各类数据发送方,用于收集数据。
系统可靠性 管理节点均实现HA Hadoop开源版本的数据、计算节点已经是按照分布式系统进行设计的,单节点故障不影响系统整体运行;而以集中模式运作的管理节点可能出现的单点故障,就成为整个系统可靠性的短板。