检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
MRS存算分离配置流程说明 MRS支持在大数据存储容量大、计算资源需要弹性扩展的场景下,用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式,从而实现按需灵活扩展资源、低成本的海量数据分析方案。 大数据存算分离场景,请务必使用OBS并行文件系统(并行文件系统
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的hbase数据表。 开发思路 设置scan的规则,例如:setCaching。
MRS支持什么类型的分布式存储? 问: MRS集群支持什么类型的分布式存储?有哪些版本? 答: MRS集群内使用主流的大数据Hadoop,目前支持Hadoop 3.x版本,并且随集群演进更新版本。 同时MRS也支持用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式。
据插入到分布式表,分布式表引擎会按轮训算法将数据发送到各个分片。 该键是写分布式表保证数据均匀分布在各分片的唯一方式。 规则 不建议写分布式表。 由于分布式表写数据是异步方式,客户端SQL由Balancer路由到一个节点之后,一批写入数据会先落入写入的节点,随后根据分布式表sch
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的HBase数据表。 开发思路 设置scan的规则,例如:setCaching。
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的HBase数据表。 开发思路 设置scan的规则,例如:setCaching。
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的hbase数据表。 开发思路 设置scan的规则,例如:setCaching。
adoop生态,采用YARN管理集群资源,提供Hive、Spark离线大规模分布式数据存储和计算,SparkStreaming、Flink流式数据计算,Presto交互式查询,Tez有向无环图的分布式计算框等Hadoop生态圈的组件,进行海量数据分析与查询。 HBase集群:HB
案。Hadoop是一个开源分布式计算平台,可以充分利用集群的计算和存储能力,完成海量数据的处理。企业自行部署Hadoop系统有成本高,周期长,难运维和不灵活等问题。 针对上述问题,华为云提供了大数据MapReduce服务(MRS),MRS是一个在华为云上部署和管理Hadoop系统
当您为IES购买MRS时,请选择可用区为“边缘可用区”。 可用区1 虚拟私有云 MRS集群节点所归属的虚拟私有云网络,如果没有可用的虚拟私有云,请单击“查看虚拟私有云”进入网络控制台,创建一个新的虚拟私有云。 - 子网 虚拟私有云网络内的子网信息,如果没有可用的子网,请单击“查看子网”进入网络控制台,创建一个新的子网。
同时ClickHouse依靠Distributed引擎实现了分布式表机制,在所有分片(本地表)上建立视图进行分布式查询,使用很方便。ClickHouse有数据分片(shard)的概念,这也是分布式存储的特点之一,即通过并行读写提高效率。 CPU架构为鲲鹏计算的ClickHouse集群表引擎不支持使用HDFS和Kafka。
Spark简介 Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言(Scala/Java/Python)的应用开发。 适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Co
MemArtsCC是一个分布式计算侧缓存系统。计算任务运行在计算集群的虚拟机(Virtual Machine, VM)上,数据存储在远端的对象存储(Object Storage Service, OBS)集群中。由于远端OBS的数据访问速度限制,VM上的计算任务经常需要等待数据而拖
ctions操作的时候才会真正启动计算过程进行计算。Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 图2 RDD操作示例 RDD看起来与Scala集合类型没有太大差别,但数据和运行模型大相迥异。 val file = sc
ctions操作的时候才会真正启动计算过程进行计算。Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 图2 RDD操作示例 RDD看起来与Scala集合类型没有太大差别,但数据和运行模型大相迥异。 val file = sc
ctions操作的时候才会真正启动计算过程进行计算。Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 图2 RDD操作示例 RDD看起来与Scala集合类型没有太大差别,但数据和运行模型大相迥异。 val file = sc
ctions操作的时候才会真正启动计算过程进行计算。Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 图2 RDD操作示例 RDD看起来与Scala集合类型没有太大差别,但数据和运行模型大相迥异。 val file = sc
Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩
Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言的应用开发。 通常适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。
配置使用分布式缓存执行MapReduce任务 配置场景 本章节操作适用于MRS 3.x及之后版本。 分布式缓存在两种情况下非常有用。 滚动升级 在升级过程中,应用程序必须保持文字内容(jar文件或配置文件)不变。而这些内容并非基于当前版本的Yarn,而是要基于其提交时的版本。一般