检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建AI助手 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,单击页面右上角“创建助手”。参考表1完成AI助手匹配。 表1 创建AI助手参数说明 参数分类 参数名称 参数说明 基本信息 助手名称 设置AI助手的名称。 描述 填写AI助手的描述,如填写功能介绍。
拥有用户OBS桶只读权限。 盘古用户角色 盘古大模型的用户可被赋予不同的角色,对平台资源进行精细化的控制。 表2 盘古用户角色 角色 说明 系统管理员 购买平台的用户默认为系统管理员,具有所有操作的权限。 运营人员 具备总览、平台管理(资产管理、权限管理)功能的权限。 模型开发人员 具备总览、服
数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种情况。因此,数据的收集和处理是大模型训练中的关键环节。 盘古大模型套件平台通过提供数据获取、清洗、配比与管理等功能,确保构建高质量的训练数据。 父主题: 准备盘古大模型训练数据集
回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 知识库管理”,单击页面右上角“创建知识库”。 知识库分为自定义知识库、引用知识库。 自定义知识库:通过盘古大模型套件平台创建的知识库。 引用知识库:引用在KooSearch服务中创
随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。
当用户提出问题时,模型先通过搜索引擎获取最新的信息,并将这些信息整合到大模型生成的答案中,从而提供既准确又及时的答案。 登录盘古大模型套件平台,在左侧导航栏中选择“能力调测”。 单击“多轮对话”页签,选择使用N2系列模型,在页面右侧“参数设置”中可以开启搜索增强功能。 图1 体验搜索增强能力
如何调用REST API 开通API 构造请求 认证鉴权 返回结果
到了宋朝。他身处一座繁华的城市,人们穿着古代的服饰,用着他听不懂的语言交谈。他意识到自己真的穿越了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小
功能名称 功能描述 阶段 相关文档 1 盘古大模型正式公测上线 盘古大模型是集数据管理、模型训练和模型部署于一体的一站式大模型开发与应用平台。平台支持大模型的定制开发,提供全生命周期工具链,帮助开发者高效构建与部署模型,企业可灵活选择适合的服务与产品,轻松实现模型与应用的开发。 公测
样和最大口令限制等。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。提示词的撰写步骤如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务操作栏中的“撰写”。
若不使用,您也可以自行对接第三方内容审核服务。关于大模型生成内容的责任主体,请参考《盘古大模型服务协议》。 启用内容审核服务 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,单击“开启内容审核”,进行授权。 图1 内容审核授权 购买内容审核套餐包,使用“文本补全”、“多轮对话
数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式 图1 数据参考格式 图2 数据示例 创建提示词评估数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 提示用例管理”。 图3 提示用例管理 单击页面右上角“创建提示用例集”,进入创建弹窗。 单击存储位置
输出指示:指定输出的类型或格式。 提示词所需的格式取决于您想要语言模型完成的任务类型,以上要素并非都是必须的。 提示词工程使用流程 盘古大模型套件平台可以辅助用户进行提示词设计、调优、比较和对提示词通用性进行自动评估等功能,并对调优得到的提示词进行保存和管理。 表1 功能说明 功能 说明
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。 租户:负责
无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,可以在盘古大模型套件平台“服务管理”功能中获取。 图3 服务管理 图4 获取deployment_id
rch命令查看) 依赖包下载。 docker下载:https://download.docker.com/linux/static/stable 选择对应cpu架构下载,docker版本选在19.0.3+。 K3S下载:https://github.com/k3s-io/k3s/releases/tag/v1
安装Ascend插件 详情请参考官方文档:https://www.hiascend.com/document/detail/zh/mindx-dl/50rc1/dluserguide/clusterscheduling/dlug_scheduling_02_000001.html
判断数据中的JSON参数是否与Query中的参数对应上。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate)