检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
单击“日志概览”页签。 可以查看到该次执行的整体情况,包括执行状态、开始/结束时间、运行时长和输入/输出。 单击“节点详情”页签。 可以查看到该次执行的主要组件耗时时长和占比情况,以及该次执行的调用链及其是否成功的状态。 单击调用链中的某个组件(例如插件天气搜索),展开调用链。 可以查看到调用链中该组件的输入和输出。
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要包含一个签名值,
基于Snt9B33,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_3h-20241030 用于天气基础要素预测,时间分辨率为3小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 Pangu
Studio大模型开发平台提供了全面的数据集质量评估工具,能够帮助用户从多个维度检测和优化数据集的质量。平台预设了多种数据类型的基础评估标准,用户可以直接使用这些标准,也可以根据具体的业务需求创建自定义的评估标准。通过这种灵活的配置方式,用户能够根据不同的应用场景和目标,精确地评估和优化数据质量,确
Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用的总Tokens数、以及输入输出的Tokens数等基本信息。 此外,该功能还提
创建NLP大模型部署任务 模型训练完成后,可以启动模型的部署操作。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,模型类型选择“NLP大模
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对,以查看其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发
测”、“全球中期海量智能预测”。 全球中期天气要素预测模型可以选择1个或者多个模型进行部署。 如果使用全球中期降水预测模型,需要选择1个平台预置好的全球中期降水预测模型,并选择对应的全球中期天气要素预测模型。并且至少有一个中期天气要素模型时间分辨率要小于等于降水模型时间分辨率。 部署模型
为Agent设定人设、目标、核心技能、执行步骤。Agent会根据LLM对提示词的理解,来选择使用插件或知识库,响应用户问题。因此,一个好的提示词可以让LLM更好的理解并执行任务,Agent效果与提示词息息相关。 在应用详情页面的“Prompt builder”模块中,需要填入pr
此示例演示了如何调用盘古NLP大模型API实现文本对话功能。您将学习如何通过API接口发送请求,传递对话输入,并接收模型生成的智能回复。通过这一过程,您可以快速集成NLP对话功能,使应用具备自然流畅的交互能力。 准备工作 调用盘古NLP大模型API实现文本对话前,请确保您已完成NLP大模型的部
涵盖数据获取、加工、标注、评估和发布等关键环节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的
对于“低码”开发者(有一定代码开发经验),可以通过工作流方式,适当编写一定代码,来构建逻辑复杂、且有较高稳定性要求的Agent应用,开发者也可以灵活组合各个组件,包含LLM、自定义代码、分支等组件,通过“拖拉拽”的方式快速搭建一个工作流。 Agent开发平台功能及优势 Age
不受其他空间的影响,从而保障数据和资源的隔离性与安全性。用户可以根据需求灵活划分工作空间,实现资源的有序管理与优化配置,确保各类资源在不同场景中的最大化利用。为进一步优化资源的管理,平台还提供了多种角色权限体系。用户可以根据自身角色从管理者到各模块人员进行不同层级的权限配置,确保
当数据集中存在异常数据、噪声数据、或不符合分析需求的数据时,可以通过加工数据集进行处理,包括但不限于数据提取、过滤、转换、打标签等操作。 上线加工后的数据集 对加工后的数据集执行上线操作。 标注数据集(可选) 创建数据集标注任务 创建数据集标注任务,并对数据集执行标注操作,标注后的数据可以用于模型训练。 审核数据集标注结果
得非常慢。 优化器 优化器参数指的是用于更新模型权重的优化算法的相关参数,可以选择adamw。 adamw是一种改进的Adam优化器,它在原有的基础上加入了权重衰减(weight decay)的机制,可以有效地防止过拟合(overfitting)的问题。 学习率衰减比率 学习率衰
击“生成”,模型将基于问题进行回答。 图1 使用预置服务进行文本对话 可以尝试修改参数以查看模型效果,示例如下: 将“核采样”参数调小,如改为0.1,保持其他参数不变,单击“重新生成”,再单击“重新生成”,可以看到模型前后两次回复内容的多样性降低。 图2 “核采样”参数调小后生成结果1
发布视频类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 视频类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
发布气象类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 气象类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测