检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
Arts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像包 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2
cn-southwest-2.myhuaweicloud.com/os-public-repo/bert_pretrain_mindspore:v1 docker tag swr.cn-southwest-2.myhuaweicloud.com/os-public-repo/bert_pretrain_mindspore:v1
Profiler接口采集。文档中包含torch_npu.profiler.profile、dynamic_profile等多种采集方式。任意torch_npu版本均支持torch_npu.profiler.profile方式,而其他采集方式则要求特定版本的torch_npu(2024年0630之后版本)。
rain/ 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。支持 .parquet \ .csv \ .json \ .jsonl \ .txt \ .arrow 格式。 --output-prefix
rain/ 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。支持 .parquet \ .csv \ .json \ .jsonl \ .txt \ .arrow 格式。 --output-prefix
rain/ 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。支持 .parquet \ .csv \ .json \ .jsonl \ .txt \ .arrow 格式。 --output-prefix
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN) 并行参数设置 micro batch size (MBS) 规格与节点数 1
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN) 并行参数设置 micro batch size (MBS) 规格与节点数 1
径。 检查使用的资源是否为CPU,CPU的“/cache”与代码目录共用10G,可能是空间不足导致,可在代码中使用如下命令查看磁盘大小。 os.system('df -hT') 磁盘空间满足,请执行5。 磁盘空间不足,请您使用GPU资源。 如果是在Notebook使用MoXing
手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel
手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel