检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
subgraphCreator参数说明 参数 是否必选 类型 说明 name 否 String 子图生成器类型。当前支持的取值为filtered。 parameters 是 JSON 子图生成器的名字不同,parameters格式不同。 表3 name=filtered时,parameters参数说明
Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入路径的起点ID String - - target 是 输入路径的终点ID String - - directed 否 是否考虑边的方向 Bool true或false false 注意事项 无。 示例 输入参数source
Shortest Path)寻找两点间满足过滤条件的最短路径,如有多条,返回任意一条最短路径。 适用场景 带一般过滤条件的最短路径算法(Filtered Shortest Path)适用于路径设计、网络规划等场景,通过对点边条件的过滤,控制最短路径的生成。 参数说明 表1 带一般过滤条件最短路径算法(Filtered
d=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。
Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。 参数说明
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
取消Job(1.0.0) 功能介绍 用于取消已经提交的作业。 只有导出图,导入图,点过滤查询、边过滤查询、多跳过滤查询(Filtered-query V2)、执行算法、增加索引返回的Job支持取消。 支持取消的算法有:topicrank、pagerank、personalrank
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_i
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1
判断左值(标签、id、属性值)是否在右值(必须是array类型)中,和内存版的左值和右值是否有交集的语义有区别。 不支持CONTAIN、NOTCONTAIN、SUBSET等集合运算。 匹配:右值是左值的PREFIX(前缀)、NOTPREFIX(非前缀)、 SUFFIX(后缀)、N
类型 取值范围 edges 是 需匹配的子图的边集, 点的ID要求为非负整数 String 标准CSV格式,边的起点与终点之间以英文逗号分隔,各边之间以换行符“\n”分隔,例如:“1,2\n2,3”。 vertices 是 需匹配的子图上各点的label String 标准CSV格
关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。 参数说明 表1 关联预测算法(Link Prediction)参数说明
根据输入参数,执行紧密中心度算法。 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
说明 directed 否 Boolean 是否考虑边的方向。取值为true或false,默认值为false。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。
紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。 适用场景 紧密中心度算法(Closeness
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
根据输入参数,执行subgraph matching算法。 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
temporal paths算法,返回距离最短的时序路径 foremost:运行foremost temporal paths算法,返回尽可能早的到达目标节点的时序路径 fastest:运行fastest temporal paths算法,返回耗费时间最短的时序路径 表4 dynamicRange
SDK)是对GES提供的REST API进行的封装,以简化用户的开发工作。 SDK 业务面SDK 管理面SDK Cypher JDBC Driver访问GES 02 购买 GES的计费简单、易于预测,您既可以选择按照小时费率计费的按需计费方式,也可以选择更经济的预付费实例计费方式。