检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。 使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可以使用专门的签名SDK对请求进行签名。详细的签名方法和SDK使用方法请参见API签名指南。
ken接口的响应值,该接口是唯一不需要认证的接口。 公有云API同时支持使用AK/SK认证,AK/SK认证是使用SDK对请求进行签名,签名过程会自动往请求中添加Authorization(签名认证信息)和X-Sdk-Date(请求发送的时间)请求头。 AK/SK认证的详细说明请参加AK/SK认证。
数据探索是什么?近线实时数据如何在数据探索中的报告体现? 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于近线实时数据会实时入库
间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去的结果集并利用trace_id回流到推荐系统的行为的点击率、转化率等指标的计算。 效果评估 父主题: 自定义场景
用户根据场景选择不同的推荐实体。 独立的排序模块 独立的基于CTR预估的排序打分模块,支持个性化排序能力。 如何访问RES 您可以通过以下任何一种方式访问RES。 管理控制台 管理控制台是基于浏览器的可视化界面。通过管理控制台,您可以使用直观的界面进行相应的操作。使用方式请参见《推荐系统用户指南》。
用户 推荐系统被推荐的对象,一般是指使用业务系统的客户。例如,某电商的客户。 物品 被推荐的内容,一般是指业务系统提供的给其用户的商品。例如,某视频网站的视频。 召回策略 召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初
智能场景简介 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习
推荐引擎和排序引擎有什么区别? 推荐引擎 推荐引擎是以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 排序引擎是以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。 父主题: 自定义场景
候选集兴趣宽度(值越大召回的候选集中不同类型的物品越多,值越小则召回的类型越单一)。若algorithm_type为NEARLINE_UPDATE_USER_CANDIDATE_SET,则此字段必填。 time_name 否 String 物品数据中代表时间特征的字段名。若rank_type值为TIME,则此字段必填。
推荐系统(Recommender System,简称RES)基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 父主题: 基础问题
RES支持哪些自定义策略? 目前RES所支持的推荐策略如下所示: 召回策略 过滤规则 特征工程 排序策略 近线策略 效果评估 推荐策略详细信息请参见《推荐系统用户指南》算法介绍及其参数说明章节。 父主题: 自定义场景
用户报表:根据不同数据格式展示用户数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。 百分位数:将数据进行排序,统计该数据在整个数据中所占的百分比。 图2 百分位数 分布统计:通过查看分布统计了解各参数下参数值的分布情况。如可以根据性别展示数据中的性别数据分布。可通过查看标签,了解数据中各种标签的分布情况。
和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 您可以使用本文档提供推荐系统服务API的描述、语法、参数说明及样例等内容,进行相关操作,例如推荐系统的具体接口使用说明。支持的全部操作请参见API概览。 在调用推荐系统API之前,请确保已
topK 用户最感兴趣的排序在前K个的物品。 行为 行为类型:用户感兴趣的行为类型。 权重值:行为的初始权重。 衰减系数:用于衰减行为初始权重的系数。 有效时间:用户配置的行为发生时间与当前时间的间隔,以小时为单位。系统只处理在该时间范围内的行为记录。 基于用户相似度的实时召回 基于用
看了某个物品的时候,会推荐最相似/最相关的物品。 “基于物品推荐用户”:某些物品的属性、描述很相似,或者经常被一起购买。如房产平台会计算物品之间的相似或关联程度,当用户查看某个物品的时候,会推荐同时拥有该类型房源的房产经纪人。 服务类型 选择您需要的服务类型。 “推荐引擎”:推荐
数据源的数据格式和近线数据导入的格式要求一致,包括用户数据、物品数据和行为数据。 用户数据 用户数据包括数据源中的“用户属性表”和用于近线计算的“用户画像”数据。用户数据记录用户的属性信息,例如地域、爱好等。 物品数据 物品数据包括数据源中的“物品属性表”和用于近线计算的“物品画
特征名称:值为时间戳(10位)的特征的名称,任务会根据此特征对候选集进行排序。 推荐天数:推荐数据的时间段,该时间段从当前开始往前推N天,默认15天。 默认热度排序。 候选集最大长度 生成候选集的最大长度,每次计算更新的候选集中的个数不会超过最大值。 默认50。 候选集的召回策略 召回候选集的策略。
特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 特征工程 召回策略 召回策略用于生成推荐的候选集,在原始数据中通过算法和规则匹配用户的候选集。 召回策略 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。