检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
objects 数据处理任务的输入通道列表,与data_source二选一。 is_current Boolean 当前任务是否是该版本的同类型任务中的最新任务。 name String 数据处理任务名称。 result Object 数据处理任务输出的结果,status为2时会出现该字段,用于特征分析任务。
2适配 本章节介绍Flux模型使用Diffusers 0.30.2框架的推理过程。使用官方提供的已经训练好的模型进行推理,输入prompt生成指定像素的图片。 使用如下命令登录huggingface,并输入个人账号的token,用于自动下载flux权重。 huggingface-cli
908-xxx.zip文件,获取路径参见表1。本案例使用的是解压到子目录aigc_train->torch_npu->diffusers的所有文件,将diffusers整个目录上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver
要,自行购买适用规格的套餐包。 适用场景 ModelArts服务支持购买套餐包,根据用户选择使用的资源不同进行收费。您可以根据业务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习和深度学习的算法开发及部署全功能,
启动方式:选择“自定义”。 镜像:选择上传的自定义镜像。 启动命令: cd ${MA_JOB_DIR}/demo && python main.py -a resnet50 -b 128 --epochs 5 dog_cat_1w/ 此处的“demo”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
Gallery页面的右上角选择“我的Gallery > 我的资产 > 数据”,进入“我的数据”。 在“我的发布”页签,查看发布异常的数据集。 图5 查看发布异常的数据集 根据异常状态的错误提示修改源数据后,单击目标数据集右侧的“重试”重新发布数据集。 删除发布的数据集 当您需要删除发布在AI
如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access.redhat.com/sol
Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的AI应用在线模型体验,可以实现模型服务的即时可用性,开发者无
如,图像分类、物体检测等等。不同的项目对数据的要求,使用的AI开发手段也是不一样的。 准备数据 数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有目的性的收集、整合相关数据,数据准备是AI开发的一个基础。此时最重要的是保证获取数据的真实可靠性。而事实上,不能一次性将
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
ModelArts提供了模型训练的功能,方便您查看训练情况并不断调整您的模型参数。您还可以基于不同的数据,选择不同规格的资源池用于模型训练。除支持用户自己开发的模型外,ModelArts还提供了从AI Gallery订阅算法,您可以不关注模型开发,直接使用AI Gallery的算法,通过算法参数的调整,得到一个满意的模型。
String 自定义镜像训练作业的自定义镜像的容器的启动命令。例如python train.py。 parameters Array of Parameter objects 训练作业的运行参数。 policies policies object 作业支持的策略。 inputs Array
建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。 services 否 Array of strings 镜像支持的服务,默认值NOTEBOOK、SSH。枚举值如下: NOTEBOOK:镜像支持通过https协议访问Notebook。 SSH:镜像支持本地I
场景说明 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为AI应用。 本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构建一个新的推理镜像,并完成AI应用的创建,部署为在线服务。本案例仅适用于华为云北京四和上海一站点。
用户项目ID。获取方法请参见获取项目ID和名称。 workflow_id 是 String 工作流的ID。 subscription_id 是 String 工作流的消息订阅ID。 请求参数 无 响应参数 无 请求示例 删除消息订阅 DELETE https://{endpoint}/v2/{project_id}/
使用“data_url”当做训练数据输入的本地路径。 检查报错的路径是否存在 由于用户本地开发的代码需要上传至ModelArts后台,训练代码中涉及到依赖文件的路径时,用户设置有误的场景较多。 推荐通用的解决方案:使用os接口得到依赖文件的绝对路径,避免报错。 示例: |---project_root