检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
安装ToolKit工具时出现错误,如何处理? 问题现象 在安装ToolKit工具过程中,出现如下错误。 图1 错误提示 解决措施 此问题是因为插件版本和PyCharm版本不一致导致的,需要获取和PyCharm同一版本的插件安装,即2019.2或以上版本。 父主题: PyCharm
PyCharm ToolKit工具中Edit Credential时,出现错误 问题现象 PyCharm ToolKit工具中Edit Credential时,提示Validate Credential error。 或 原因分析 可能原因一:Region等信息配置不正确 可能原
如何删除预置镜像中不需要的工具 预置的基础镜像中存在cpp、gcc等调试/编译工具,如果您不需要使用这些工具,可以通过运行脚本删除。 创建一个run.sh脚本文件,文件中的代码内容如下。然后在容器中执行sh run.sh命令运行脚本。 #!/bin/bash delete_sniff_compiler()
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性的做一些调优操作。 可以直接使用bench
使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决? 问题现象 MobaXterm成功连接到开发环境后,过一段时间会自动断开。 可能原因 配置MobaXterm工具时,没有勾选“SSH keepalive”或专业版MobaXterm工具的“Stop server
使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决? 问题现象 MobaXterm成功连接到开发环境后,过一段时间会自动断开。 可能原因 配置MobaXterm工具时,没有勾选“SSH keepalive”或专业版MobaXterm工具的“Stop server
使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器
ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随
/"当前所在路径 --baseline <baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的Hu
最优配置参数。 --baseline <baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。
推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含
所有承载ModelArts服务的主机部署了主机安全防护产品。包括不限于华为自研HSS或计算安全平台CSP。 ModelArts服务部署了漏洞扫描服务并自行进行例行扫描,能快速发现漏洞并能及时修复。 ModelArts服务通过统一的安全管控平台对云上资源进行安全运维。 ModelArts服务部署
pip介绍及常用命令 pip常用命令如下: pip --help#获取帮助 pip install SomePackage==XXXX #指定版本安装 pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本
nt的组合。 kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook、代
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0