检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置小一些,比如16。
容器调用接口参数:根据镜像实际提供的协议和端口填写,本案例中的SDXL镜像提供HTTP服务和8183端口。 图4 填写参数(1) 系统运行架构: 选择ARM. 推理加速卡:无。 部署类型: 在线服务。 请求模式:同步请求。
--port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。
--port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。
IfNotPresent name: pytorch-npu # 容器名称,根据实际场景修改 env: - name: OPEN_SCRIPT_ADDRESS # 开放脚本地址
模型提供的推理接口所使用的协议和端口号,缺省值是HTTPS和8080,端口和协议需要根据模型实际定义的推理接口进行配置。 “健康检查” 用于指定模型的健康检查。使用Custom引擎时,会显示该参数。
http_port 3128 设置主机目录和配置文件权限如下。
--port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。
-p 8585:8585:映射端口号,用户可自定义未被占用的端口号。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 步骤三:进入容器 通过容器名称进入容器中。默认使用ma-user用户执行后续命令。
--port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。
--port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。
启动后容器默认端口是8080。 配置需要使用的NPU卡为容器中的第几张卡。例如:实际使用的是容器中第1张卡,此处填写“0”。 export ASCEND_RT_VISIBLE_DEVICES=0 如果启动服务需要使用多张卡,则按容器中的卡号依次编排。
--port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。
约束限制 相应region区域开放此功能。 新增委托授权操作SFS Turbo 登录ModelArts管理控制台,在左侧导航栏选择“权限管理”,进入“权限管理”页面。 单击“添加授权”,进入“访问授权”配置页面,根据参数说明进行配置。
--port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。
--port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。
--port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。
对于开放代码的算法,您也可以在详情页面预览或者下载对应代码。 在“代码”页签,单击右侧的“下载”将完整代码下载到本地,您也可以单击下方列表中的文件名称进行预览。
--port:服务部署的端口8080。
--port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。