检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts中使用自定义镜像创建在线服务,如何修改端口? 当模型配置文件中定义了具体的端口号,例如:8443,创建模型没有配置端口,或者配置了其他端口号,均会导致服务部署失败。您需要把模型中的端口号配置为8443,才能保证服务部署成功。 修改默认端口号,具体操作如下: 登录ModelArts控制台,左侧菜单选择“模型管理”;
型界面上配置的端口。确认两处端口保持一致。模型创建界面如果不填端口信息,则ModelArts会默认监听8080端口,即镜像代码中启用的端口必须是8080。 图2 自定义镜像中的代码开放的端口 图3 创建模型界面上配置的端口 健康检查配置有问题 镜像如果配置了健康检查,服务启动失败,从以下两个方面进行排查:
Oracle通信端口,弹性云服务器上部署了Oracle SQL需要放行的端口。 MySQL 3306 MySQL数据库对外提供服务的端口。 Windows Server Remote Desktop Services 3389 Windows远程桌面服务端口,通过这个端口可以连接Windows弹性云服务器。
vpcep_service_name String VPC访问通道vpcep终端节点服务名称。 service_port Integer VPC访问通道的端口。 状态码:401 表6 响应Header参数 参数 参数类型 描述 X-Request-Id String 链路追踪ID
一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题:
extend_storage 否 Array<Storage> 扩展存储列表,如表4所示。扩展存储当前仅支持type为“obsfs”的类型,且仅对部分专属资源池开放。 auto_stop 否 Object 自动停止参数,如表6 auto_stop定义数据结构说明所示。 annotations 否 Map<String
Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL推理。
式的第三方组件可通过API http://<节点IP>:<端口号>/metrics获取ModelArts采集到的指标数据。 开通前需要确认使用的端口号,端口号可选取10120~10139范围内的任一端口号,请确认选取的端口号在各个节点上都没有被其他应用占用。 Kubernetes
Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL
<密钥相对路径> -p <端口> ma-user@<域名/ip> SSH可用时跳过3继续远端排查。 SSH不可用,排查3。 在VS Code Terminal里执行如下检查网络。如果网络异常,请执行命令检查端口。 curl -kv telnet://<域名/ip>:<port> 端口有问题,请联系技术支持。
请求的服务器信息,从服务API的URL中获取。 值为hostname[:port]。 端口缺省时使用默认的端口,https的默认端口为443。 否,使用AK/SK认证时必选。 code.test.com or code.test.com:443 API同时支持使用AK/SK认证,AK/SK认证是使
Lite Cluster&Server介绍 ModelArts Lite基于软硬件深度结合、垂直优化,构建开放兼容、极致性价比、长稳可靠、超大规模的云原生AI算力集群,提供一站式开通、网络互联、高性能存储、集群管理等能力,满足AI高性能计算等场景需求。目前其已在大模型训练推理、自
选择“代码”页签,单击右上方的“编辑”,可以选择“代码是否开放”。 订阅期满之前,下架代码不开放的算法不影响已订阅用户的使用。再次发布该算法代码开放后,主页列表不展示已经下架的算法,但用户可以在“我的Gallery > 我的资产 > 算法 > 我的订阅”页面单击该算法名称查看预览代码。 如果开放代码可以选择修改“许可证类型”。
上构建的开发者生态社区,提供算法、模型、数据集等内容的共享,为高校科研机构、模型开发商、解决方案集成商、企业级个人开发者等群体,提供安全、开放的共享,加速AI资产的开发与落地。 发布至AI Gallery的资产是免费的,只需要支付在使用过程中消耗的硬件资源,硬件资源费用将根据实际
Notebook使用场景 ModelArts提供灵活开放的开发环境,您可以根据实际情况选择。 ModelArts提供了CodeLab功能,一方面,一键进入开发环境,同时预置了免费的算力规格,可直接免费体验Notebook功能;另一方面,针对AI Gallery社区发布的Notebook样例(
ModelArts服务部署主机层、应用层、网络层和数据层的安全防护套件。及时检测主机层、应用层、网络层和数据层的安全入侵行为。 ModelArts服务涉及对互联网开放的Web应用,采用了统一推荐的Web安全组件防范Web安全风险,并且通过WAF进行安全防护。 所有承载ModelArts服务的主机部署了主
TensorFlow Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。 Trito
Gallery提供了模型、数据集、AI应用等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 使用流程 本节主要介绍在AI Gallery中管理资产的整体流程。
Gallery算法、镜像、模型、Workflow等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 资产集市介绍 AI Gallery中,
Gallery使用指南 AI Gallery是一个AI资产共享平台,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享环境。 AI Gallery简介 AI Gallery简介 使用指导 发布和管理AI Gallery模型 发布和管理AI Gallery的AI应用