检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理服务部署 准备推理环境 启动推理服务 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
推理服务精度评测 本章节介绍了2种精度测评方式,分别为Lm-eval工具和MME工具。 lm-eval工具适用于语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等,该工具为离线测评,不需要启动推理服务。
单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905)
ModelArts训练专属资源池如何与SFS弹性文件系统配置对等链接? 配置训练专属资源池与SFS弹性文件系统的对等链接,需要资源池打通VPC,使得资源池与SFS弹性文件系统所配置的VPC相同。配置完成后,在创建训练作业时,就可以看到SFS的配置选项。 打通VPC步骤请参考打通VPC。
├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6
对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提示词,用来为整个对话设定场景或提供指导原则。 history: 一个列表,包含之前轮次的对话记录,每一对都是用户消息和模型回复。这有助于保持对话的一致性和连贯性。
推理服务性能评测 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.908)
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.910)
单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
X86上运行。 - 当前使用的操作系统及版本 当前推理业务的操作系统及版本,如:Ubuntu 22.04。 是否使用容器化运行业务,以及容器中OS版本,HostOS中是否有业务软件以及HostOS的类型和版本。 需要评估是否愿意迁移到华为云的通用OS。 - AI引擎及版本 当前引
单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.911)
conf sysctl -p | grep net.ipv4.ip_forward Step2 获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 docker pull {image_url} Step3 启动容器镜像 启动容器镜像
模型:结构实现和社区一致,Huggingface模型开箱即用,同时可以快速适配新模型。 调用:提供高性能算子下发和图模式两种方案,兼顾性能和灵活性。 特性:服务调度、特性实现和社区一致,针对昇腾硬件做亲和替换和优化。 接口:离线SDK、在线OpenAI Server和社区完全一致,无缝迁移。 Ascend-vLLM支持的特性介绍
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明
主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 开启训练故障自动重启功能 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)