检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
建文件夹model/llama-2-13b-hf。 利用OBS Browser+工具将下载的模型文件上传至创建的文件夹目录下。 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中
准备权重 获取对应模型的权重文件,获取链接参考表1。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/
准备权重 获取对应模型的权重文件,获取链接参考表1。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
在创建OBS桶创建的桶下创建文件夹用以存放数据,例如在桶standard-llama2-13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data
在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例):
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 指令监督微调训练任务 查看日志和性能 训练脚本说明 附录:指令微调训练常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和GPU对齐。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 执行预训练任务 执行SFT全参微调训练任务 执行LoRA微调训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
由于ModelArts创建训练作业时,需要将作业日志输出至OBS桶中,因此创建OBS桶为必选项。用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。 创建VPC 虚拟私有云(Virtual Private Cloud
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)