检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考不同模型推荐参数、NPU卡数进行配置。 图5 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。
启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。
请求从到达服务开始到开始被调度的耗时 request_latency(请求总时延):请求从到达服务开始到结束的耗时 以上指标单位均是ms,保留2位小数。
AI Gallery功能介绍 面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。
图2 创建镜像组织 Step4 获取推理基础镜像 建议使用官方提供的镜像部署服务。镜像地址{image_url}参考镜像版本。
图4 复制登录指令 Step7 上传镜像 在ECS服务器中输入登录指令后,使用下列示例命令将Standard镜像上传至SWR。
建议使用官方提供的镜像部署训练服务。镜像地址{image_url}请参见表1。 docker pull {image_url} Step6 修改并上传镜像 1.
若buildkitd的服务运行状态如下图所示,则表示服务运行成功。
存储限制 根据规格情况合理使用数据盘,数据盘大小请参考训练环境中不同规格资源大小。 CPU过载 减少线程数。 排查办法 根据错误信息判断,报错原因来源于用户代码。
service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean 是否支持APP CODE。
service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean 是否支持APP CODE。
resource_requirements Array of resource_requirements objects 算法资源约束,可不设置。设置后,在算法使用于训练作业时,控制台会过滤可用的公共资源池。
启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。
Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图4 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。
内容示例如下: 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数,启动kv-cache-int8-per-tensor+per-head量化服务。
模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
scene_steps=[model_step, service_step] ), ] ) ) 该示例中Workflow包含了五个节点(节点相关定义已省略),在policy中定义了两个预置场景:模型训练和服务部署
训练资源规格:配置计算资源。由于举例的算法只能跑GPU,此处必须配置GPU类型的资源,可使用免费规格(modelarts.p3.large.public.free)。 配置项修改完成后执行如下代码。
发布ModelArts数据集中的数据版本 ModelArts在数据准备过程中,针对同一数据源的数据,对不同时间处理或标注后的数据,按照版本进行区分方便后续模型构建和开发时选择对应的数据集版本进行使用。 关于数据集版本 针对刚创建的数据集(未发布前),无数据集版本信息,必须执行发布操作后
--num-scheduler-steps: 服务启动如果配置了--num-scheduler-steps和--multi-step-stream-outputs=false,则需配置此参数与服务启动时--num-scheduler-steps一致。