检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
ommit编号 ll 如果出现如图2,则表示远端已上传,则执行2。 反之,如果显示0KB,则表示远端未上传。请参考Notebook如何离线安装VS Code Server离线下载VS Code插件后,再执行2。 图2 远端已上传 关闭VS Code所有窗口,回到ModelArts
”或拖动文件,单击“确认上传”启动上传。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery CLI配置工具指南。 文件合集大小不超过50GB。 文件上传完成前,请不要刷新或关闭上传页面,防止意外终止上传任务,导致数据缺失。
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 云上迁移适配故障
执行以下命令,下载代码。 git clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0.28.0 accelerate==0.30.1 timm==0.9.16 准备数据集。
a1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build
a1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build
a1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
优化。用户需要在代码中打印搜索参数并在控制台配置以下参数。 图1 设置算法搜索功能 搜索指标 搜索指标为目标函数的值,通常可以设置为loss、accuracy等。通过优化搜索指标的目标值超优化方向收敛,找到最契合的超参,提高模型精度和收敛速度。 表1 搜索指标参数 参数 说明 名称
建的节点计费模式和资源池保持一致。 在“专属资源池扩缩容”页面,设置“资源配置 > 可用区”,可用区可选择随机分配和指定AZ。 选择随机分配时,扩缩容完成后,节点的可用区分布由系统后台随机选择。 选择指定AZ时,可指定扩缩容完成后节点的可用区分布。 图1 资源配置(单节点方式) 修改容器引擎空间大小
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
调优工具链,最大程度减少客户自行配置环境的复杂度。 范围 本文涉及PyTorch训练的单卡和分布式业务迁移到昇腾的业务范围。当前针对常见的开源LLM/AIGC等领域的开源模型,ModelArts已经提供了迁移好的开箱即用模型,且保证了较优的精度和性能。如果用户业务同样使用这些开源
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
atch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码)
“/home/ma-user/work”目录以及动态挂载在“/data”下的目录下的数据会保存,其余目录下内容会被清理。例如:用户在开发环境中的其他目录下安装的外部依赖包等,在Notebook停止后会被清理。您可以通过保存镜像的方式保留开发环境设置,具体操作请参考保存Notebook实例。 No
作业类型”有“训练作业”、“推理服务”和“开发环境”,用户可按需自行选择。 设置某一作业类型后,即可在此专属资源池中下发此种类型的作业,没有设置的作业类型不能下发。 为了支持不同的作业类型,后台需要在专属资源池上进行不同的初始化操作,例如安装插件、设置网络环境等。其中部分操作需要