检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
及步骤之间的关系进行定义 针对工作流复用,用户可以在开发完成后将流水线固化下来,提供下次或其他人员使用,同时无需关注流水线中包含什么算法或如何实现 图1 Workflow流程 父主题: Standard功能介绍
增量训练 分布式训练 训练加速 训练高可靠性 查看训练结果和日志 查看训练作业详情 训练作业运行中或运行结束后,可以在训练作业详情页面查看训练作业的参数设置,训练作业事件等。 查看训练作业日志 训练日志用于记录训练作业运行过程和异常信息,可以通过查看训练作业日志定位作业运行中出现的问题。
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
角弹窗提示标注保存失败,第二次提交相同的标注结果,又提示标注成功,此问题概率性发生。“F12”打开浏览器Console,单击network查看请求列表,请求状态显示为(failed)net::ERR_ADDRESS_IN_USE。 原因分析 可能是用户本地网络的原因,网速不稳定或者网络配置有问题,均可能导致保存失败。
容器中挂载存储有多种方式,不同的场景下推荐的存储方式不一样,详情如表1所示。容器存储的基础知识了解请参见存储基础知识,有助您理解本章节内容。您可查看数据盘空间分配说明,了解节点数据盘空间分配的情况,以便您根据业务实际情况配置数据盘大小。 表1 容器挂载存储的方式及差异 容器挂载存储的方式
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
可纠正ECC错误(单比特ECC错误),不影响业务。观测方式:nvidia-smi -a中查询到Volatile Correctable记录。 L2: 不可纠正ECC错误(多比特ECC错误),当次业务受损,重启进程可恢复。观测方式:nvidia-smi -a中查询到Volatile Uncorrectable记录。 L3:
gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "zero_allow_untested_optimizer": true, "fp16": {
训练作业的监控内存指标持续升高直至作业失败 问题现象 训练作业的“状态”为“运行失败”。 原因分析 训练作业的监控内存指标持续升高,导致最后训练作业失败。 处理步骤 查询训练作业的日志和监控信息,是否存在明确的OOM报错信息。 是,训练作业的日志里存在OOM报错,执行2。 否,训练作业的日志里没有OOM报错,但是存在监控指标异常,执行3。
String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表5 Apps 参数 是否必选 参数类型 描述 app_id 否 String APP的编号,可通过查询APP列表获取。 响应参数 状态码: 200
ModelArts上支持的Ascend驱动版本可以在ModelArts专属资源池(NEW)的详情页面查看到。ModelArts上支持的Cann软件版本可以在训练基础镜像详情页面查看,具体请参见训练基础镜像详情(Ascend-Powered-Engine)。 Ascend驱动版本与Cann软件版本的兼容关系如下表所示:
授权管理 查看授权列表 配置授权 删除授权 创建ModelArts委托
Gallery的“数据”中,可以查找并下载满足业务需要的数据集。也可以将自己本地的数据集发布至AI Gallery中,共享给其他用户使用。 “资产集市 > 算法”:共享了算法。 AI Gallery的算法模块支持算法的共享和订阅。在AI Gallery的“算法”中,可以查找您想要的算法,订阅满
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件