检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
资源池分为公共资源池与专属资源池。 公共资源池供所有租户共享使用。 专属资源池需单独创建,不与其他租户共享。 实例规格 选择实例规格,规格中描述了服务器类型、型号等信息。 更多选项 永久保存日志 选择是否打开“永久保存日志”开关。 开关关闭(默认关闭):表示不永久保存日志,则任务日志会在3
String API的认证方式。枚举值如下: NONE:无认证 APP:APP认证 IAM:IAM认证 predict_url String 预测地址。 service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean
5版本,若非该版本号则在代码开始处执行: import os os.system('pip install numpy==1.18.5') 如果依旧有报错情况,将以上代码修改为: import os os.system('pip install numpy==1.18.5') os.system('pip install
本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 代码包中适配的模型 序号 支持模型 支持模型参数量 权重文件获取地址 1 Llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
\"required\":true},{\"label\":\"mom\",\"value\":\"0.9\",\"placeholder_cn\":\"训练网络的动量参数\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"wd\",\"value\":\"0
String 模型所在的OBS路径或SWR镜像地址。 source_copy 否 String 镜像复制开关,仅当“model_type”为“Image”时有效。 取值范围: true:默认值,复制镜像模式,无法极速创建AI应用,SWR源目录中的镜像更改或删除不影响服务部署。 false:
tags Array of UserTag objects 资源标签,非特权池不能指定。 network NodeNetwork object 网络配置,非特权池不能指定。 extendParams Map<String,String> 自定义配置,比如设置节点dockerSize:"extendParams":
Array of strings 镜像支持的规格。 枚举值如下: CPU GPU ASCEND swr_path String SWR镜像地址。 tag String 镜像Tag。 type String 镜像类型。枚举值如下: BUILD_IN:系统内置镜像。 DEDICATED:用户保存的镜像。
有完成验收,标注信息才会同步到标注作业的已标注页面中。 一旦标注数据完成验收,团队成员无法再修改标注信息,只有数据集创建者可修改。 表1 完成验收的参数设置 参数 说明 对已标注数据修改 不覆盖:针对同一个数据,不使用当前团队标注的结果覆盖已有数据。 覆盖:针对同一个数据,使用当
tags Array of UserTag objects 资源标签,非特权池不能指定。 network NodeNetwork object 网络配置,非特权池不能指定。 extendParams Map<String,String> 自定义配置,比如设置节点dockerSize:"extendParams":
一起同步至运行平台。 数据集描述 - 资产的README内容,支持添加资产的简介、使用场景、使用方法等信息。 编辑完成后,单击“确认”保存修改。 管理数据集文件 预览文件 在数据集详情页,选择“数据集文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。
出。 用户自定义执行数据处理脚本修改参数说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
本文档提供的调测代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。 DataParallel进行单机多卡训练的优缺点 代码简单:仅需修改一行代码。 通信瓶颈 :负责reducer的GPU更新模型参数后分发到不同的GPU,因此有较大的通信开销。
确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
String API的认证方式。枚举值如下: NONE:无认证 APP:APP认证 IAM:IAM认证 predict_url String 预测地址。 service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean
keras from keras.layers import Dense, Activation, Flatten, Dropout # 定义模型网络 model = Sequential() model.add(Flatten(input_shape=(28,28))) model.add(Dense(units=5120
下步骤排查。 解决方案 排查/home/ma-user权限,建议将该目录权限设置为755或750,权限不能过于宽松,以保证用户隔离和安全。修改方法如下。 chomd 755 /home/ma-user chomd 750 /home/ma-user 排查密钥是否是和实例绑定的一致。
ma/customize_from_ubuntu_18.04_to_modelarts”下。 图3 查询Dockerfile的路径 Dockerfile命令修改为相对路径,举例如下: COPY ./mindspore-2.1.0-cp39-cp39-linux_aarch64.whl /tmp/mindspore-2
ModelArts数据管理支持哪些格式? 不同类型的数据集支持不同的功能。 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本 自动分组 数据特征 文件型 图像分类 支持 支持 支持 支持 支持 支持 支持 支持 物体检测 支持 支持 支持 支持 支持
e/ 用户自定义执行数据处理脚本修改参数说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到