检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤4进行评测。 # WARNING #
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤4进行评测。 # WARNING #
准备镜像 准备训练模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置物理机环境操作。 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deep
本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 适配的Cann版本是cann_8.0.rc3。 约束限制 本方案目前仅适用于企业客户。 本文档适配昇腾云ModelArts 6.3.910版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。
在安装ma-cli时会默认同时安装所需的依赖包。当显示“Successfully installed”时,表示ma-cli安装完成。 如果在安装过程中报错提示缺少相应的依赖包,请根据报错提示执行如下命令进行依赖包安装。 pip install xxxx 其中,xxxx为依赖包的名称。 父主题: ModelArts
工作空间管理 查询工作空间详情 修改工作空间 删除工作空间 查询工作空间配额 修改工作空间配额 查询工作空间列表 创建工作空间
处理后删除的图片数量。 description String 数据处理任务的版本描述。 duration_seconds Integer 数据处理任务的运行时间,单位秒。 inputs Array of ProcessorDataSource objects 数据处理任务的输入通道。
pore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 支持精度预检,可扫描训练模型中的所有API进行API复现,给出精度情况的诊断和分析。 精度比对,对PyTorch整网API粒度的数据dump、精度比对,进而定位训练场景下的精度问题 支持溢出检测功能,判断
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
和安装可用的更新,这可能导致系统在不经意间被重启,如果使用的软件依赖于特定版本的内核,那么当系统自动更新到新的内核版本时,可能会出现兼容性问题。在使用Ubuntu20.04时,建议手动控制内核的更新。 禁用自动更新可能会导致您的系统变得不安全,因为您需要手动安装重要的安全补丁。在
yTorch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyTorch的动态图机制下,算子被CPU逐个下发到NPU上执行。一方面,理想情况下CPU侧算子下发会明显比NPU
场景说明 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为模型。 本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构建一个新的推理镜像,并完成模型的创建,部署为在线服务。本案例仅适用于华为云北京四和上海一站点。
述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet适配到昇腾卡进行训练,可以提高能效、支持更大模型和多样化部署环境,提升昇腾云在图像生成和编辑场景下的竞争力。 本章节介绍SDXL&SD
在MaaS服务的“模型部署”页面,选择“我的服务”页签,在服务列表选择模型服务“service-1122”,单击操作列的“更多 > 删除”,在弹窗中输入“DELETE”,单击“确定”,删除服务。 在MaaS服务的“我的模型”页面,选择模型“Qwen2-7B”,单击操作列的“更多 >