检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。
中期天气要素预测模型的训练支持预训练、微调两种操作,如果直接使用平台预置的中期天气要素预测模型不满足您的使用要求时,可以进行预训练或微调。预训练、微调操作的适用场景如下: 预训练:训练用于添加新的高空层次、高空变量或表面变量。如果您需要在现有模型中引入新要素,需要使用训练(重新训练模型)。在重训配置参数
创建Agent的首要步骤就是撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。Agent会根据LLM对提示词的理解,来选择使用插件或知识库,响应用户问题。因此,一个好的提示词可以让LLM更好的理解并执行任务,Agent效果与提示词息息相关。 在应用详情页面的“Prompt
来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同
空间管理 ModelArts Studio大模型开发平台为用户提供了灵活且高效的空间资产管理方式。平台支持用户根据不同的使用场景、项目类别或团队需求,自定义创建多个工作空间。每个工作空间都是完全独立的,确保了工作空间内的资产不受其他空间的影响,从而保障数据和资源的隔离性与安全性。
“训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的
能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问
数据资产:用户已发布的数据集将作为数据资产存放在空间资产中。用户可以查看数据集的详细信息,包括数据格式、大小、配比比例等。同时,平台支持数据集的删除等管理操作,使用户能够统一管理数据集资源,以便在模型训练和分析时灵活调用,确保数据资产的规范性与安全性。 模型资产:平台提供的模型资产涵盖了预置或训练后发
压缩任务。 表1 模型压缩任务参数说明 参数类别 参数名称 说明 压缩配置 压缩模型 选择需要进行压缩的模型,可使用来自资产的模型或任务的模型。 压缩策略 例如,可使用INT8压缩策略,同等QPS目标下,INT8可以降低推理显存占用。 基本信息 任务名称 模型压缩任务的名称。 描述
结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简明易懂地说明这些技巧在提示工程中的应用。随着模型的进化和理解能力的提升,尽管在简单任务中模糊的指示也会取得
建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出多个工作空间,实现资产的精细化管理与有序调配,帮助用户高效地规划和分配任务,使团队协作更加高效。
'relation_operator': 'EQUAL-TO'}]}}"} 数据量级要求:本场景使用了30000条数据进行微调。 类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。
预览提示词效果 提示词撰写完成后,可以通过输入具体的变量值,组成完整的提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变
的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
给大模型示例或鼓励大模型解释推理过程,可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参
资产。 在“本空间”页签可查看模型资产,并可对模型进行删除操作。单击模型名称可进入详情页面查看模型的基础信息。 在“预置”页签可查看用户可使用的各类模型的预置资产。 图1 查看预置模型预置模型 单击模型,可在“版本列表”页签查看当前模型的历史版本,并执行模型的基本操作如训练、部署
功能,包括查看数据集的详细信息、追踪操作记录、以及数据集的删除管理等。这不仅便于用户对已发布数据集的集中管理,还可帮助用户了解每个数据集的使用情况,从而简化数据资产的维护更新流程。通过这样的统一管理,用户能够更高效地组织和利用数据资源,确保数据资产的安全性和一致性。 管理数据资产
删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理 提示词管理支持用户对满意的候选提示词进行保存管理,同时支持提示词的查询、删除。 图1 提示词工程使用流程 父主题: 开发盘古大模型提示词工程
统一管,资产管理“全” ModelArts Studio大模型开发平台数据、模型、Agent应用在统一的入口进行管理,可以快速的掌握资产的使用情况、版本情况和溯源信息等。
参数。 单击应用右上角的,打开大模型参数配置页面。配置参数见表1,完成大模型参数配置。 表1 大模型参数配置 参数 说明 模型选择 选择要使用的LLM,不同的模型效果存在差异。 模式选择 用于配置大模型的输出多样性。 包含取值: 精确的:模型的输出内容严格遵循指令要求,可能会反复讨论某个主题,或频繁出现相同词汇。