检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ClientBuilder.build(ClientBuilder.java:98) HttpConfig这个类在sdk-core包里面找不到,造成原因为用户使用的sdk版本太老导致,建议使用最新版本的华为云java sdk,运行代码再具体定位。 java.lang.NoSuchFieldError:
后付费 先使用再付费。 计费公式:实际消耗的Token数量 * Token单价 Token计算精确到1K Tokens,不足1K Tokens的部分舍去,按小时自动扣费。 变更配置 盘古NLP大模型的模型订阅服务和推理服务默认采用包周期计费,训练服务则默认采用按需计费。使用周期内不支持变更配置。
的难度较大时,该问题将愈加显著。 当然,如果您的可用数据很少,也可以采取一些方法来扩充您的数据,从而满足微调要求,比如: 数据增强:在传统机器学习中,可以通过简单的重复上采样方式来扩充数据,但该方法不适用于大模型微调的场景,这将导致模型的过拟合。因此可以通过一些规则来扩充数据,比
当您的目标任务是多轮问答,并且使用了多轮问答数据进行微调,微调后却发现多轮回答的效果不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。比如,当前是第三轮对话,数据中的问题字段需要包含第
监控安全风险 盘古提供基于主机防护服务HSS的资源和操作监控能力,同时支持CTS审计日志,帮助用户监控自身企业账号下的管理操作。用户可以实时掌握服务使用过程中所产生的各类监控指标。 父主题: 安全
件。 图3 购买盘古大模型套件 对于前期邀测用户,如果未购买模型推理资产,仍可以使用公共资源池部署模型;对于购买推理资产的邀测用户,仅可以使用专属资源池部署模型。 对于新购买平台的用户,仅可购买并使用专属资源池。 父主题: 准备工作
到了一位名叫王安石的大儒,他的智慧和博学让李晓深感敬佩。在宋朝的生活中,李晓也遇到了许多困难。他必须适应新的食物,新的气候,甚至新的疾病。但是,他从未放弃,他始终坚信,只要他坚持下去,他就能适应这个新的世界。在宋朝的生活中,李晓也找到了新的目标。他开始学习宋朝的书法,尝试理解这个
到了一位名叫王安石的大儒,他的智慧和博学让李晓深感敬佩。在宋朝的生活中,李晓也遇到了许多困难。他必须适应新的食物,新的气候,甚至新的疾病。但是,他从未放弃,他始终坚信,只要他坚持下去,他就能适应这个新的世界。在宋朝的生活中,李晓也找到了新的目标。他开始学习宋朝的书法,尝试理解这个
自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j public class CustomLLM extends AbstractLLM<LLMResp>
什么情况下需要微调 微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数
small报错 报错原因:模型训练过程中,训练日志出现“The dataset size is too small”报错,表示数据量太少,拼接到模型要求长度后,条数不满足一次训练下沉。 解决方案:请增大数据集大小或者把epochs设大,保证日志中的Sink_num > 0。 图3 The
docker下载:https://download.docker.com/linux/static/stable 选择对应cpu架构下载,docker版本选在19.0.3+。 K3S下载:https://github.com/k3s-io/k3s/releases/tag/v1.21.12%2Bk3s1
泛化出更多的业务场景数据。 方法一:在大模型输入的Prompt中包含“人设赋予”、“任务描述”、“任务具体要求”和“输出格式要求”等部分后,模型通常能够生成质量较高的数据。示例如下: 大模型输入: 你是一名短视频的知名带货博主,你的日常工作在短视频平台上进行各类产品的带货直播。你
如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content 是 String 对话的内容,可以是任意文本,单位token。 设置多轮对话时,message中content个数不能超过20。 最小长度:1 最
n计算器工具。Token计算器可以帮助用户在模型训练前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 使用Token计算器的步骤如下: 登录盘古大模型套件平台。 在“服务管理”页面,单击页面右上角“Token计算器”。 在Token计算器中选择所需的模型,并输入文
来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同
议您直接使用低质量数据进行微调。 一份高质量的数据应具备以下几类特征: 数据与目标任务一致:微调数据应该与微调任务的目标和分布保持一致,反映出任务的实际要求。比如,现在需要微调一个情感分类的模型,模型只需要回复“消极”或者“积极”: 情感分类场景-典型低质量数据:数据中存在与目标任务不一致的样本。
NLP大模型提供了基模型和功能模型两种类型: 基模型:已经在大量数据上进行了预训练,学习并理解了各种复杂特征和模式。这些模型可以作为其他任务的基础,例如阅读理解、文本生成和情感分析等。基模型本身不具备对话问答能力。 功能模型:在基模型的基础上进行微调,以适应特定任务。功能模型具备对话
的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
API凭证”页面,获取user name、domain name、project id。 project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project id。 图1 查看盘古服务区域 图2 获取user name、domain