检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ssh文件夹,选择“属性”。然后单击“安全”页签。 单击“高级”,在弹出的高级安全设置界面单击“禁用继承”, 在弹出的“阻止继承”窗口单击“从此对象中删除所有继承的权限”。此时所有用户都将被删除。 添加所有者:在同一窗口中,单击“添加”,在弹出的新窗口中,单击“主体”后面的“选择主体”,弹出“选择用
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
String 用户在运营平台选择的折扣信息。 os.modelarts/service.console.url 否 String 订购订单支付完成后跳转的url地址。 os.modelarts/order.id 否 String 订单id,包周期资源创建或者计费模式变更的时候该参数必需。 表5
在“模型部署”页面,单击“我的服务”页签。 在目标模型服务右侧,单击操作列的“更多 > 设置QPS”,在弹窗中修改数值,单击“提交”启动修改任务。 图1 修改QPS 在“我的服务”页签,单击服务名称,进入服务详情页,可以查看修改后的QPS是否生效。 父主题: 管理我的服务
_eval.sh中的参数 模型存放的地方,如果根据第2步的方式保存的模型,设置如下: CKPT="llama-vid/llama-vid-7b-full-224-video-fps-1" 调用openai的key,评估精度时需要调用openai,需要填写正确的key,这个可能需要进行付费调用,评估1000条大概需要0
为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
个组织。创建组织的详细操作请参见创建组织。 同一个组织内的用户可以共享使用该组织内的所有镜像。 镜像会以快照的形式保存,保存过程约5分钟,请耐心等待。此时不可再操作实例(对于打开的JupyterLab界面和本地IDE仍可操作)。 快照中耗费的时间仍占用实例的总运行时长,如果在快照
本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 适配的Cann版本是cann_8.0.rc3。 约束限制 本方案目前仅适用于企业客户。 本文档适配昇腾云ModelArts 6.3.910版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。
rLab中下载大于100MB的文件到本地。 从JupyterLab中下载不大于100MB的文件至本地 在JupyterLab文件列表中,选择需要下载的文件,单击右键,在操作菜单中选择“Download”下载至本地。 下载的目的路径,为您本地浏览器设置的下载目录。 图1 下载文件
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity