检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ssh文件夹,选择“属性”。然后单击“安全”页签。 单击“高级”,在弹出的高级安全设置界面单击“禁用继承”, 在弹出的“阻止继承”窗口单击“从此对象中删除所有继承的权限”。此时所有用户都将被删除。 添加所有者:在同一窗口中,单击“添加”,在弹出的新窗口中,单击“主体”后面的“选择主体”,弹出“选择用
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。
为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
表2 请求Header参数 参数 是否必选 参数类型 描述 Content-Type 否 String 消息体的类型。设置为text/plain,返回临时预览链接。设置为application/octet-stream,返回临时下载链接。 X-Auth-Token 是 String
S Turbo的部分权限。 涉及配置的自定义权限策略项如下: sfsturbo:shares:addShareNic:此策略项表示sfsturbo创建网卡的权限。 sfsturbo:shares:deleteShareNic:此策略项表示sfsturbo删除网卡的权限。 sfst
arams.json”中的参数,否则配置的参数将无法在推理过程中生效。 “inference_params.json”文件的参数请参见表4。该参数会显示在部署推理服务页面,在“高级设置”下会新增“参数设置”,基于配置的推理参数供模型使用者修改自定义镜像的部署参数。 表4 自定义推理参数说明
重置AppCode 功能介绍 重置指定API网关应用的指定的AppCode,只有APP的创建用户才可以重置AppCode,且只有共享/专享版APIG的APP才支持AppCode。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自
rLab中下载大于100MB的文件到本地。 从JupyterLab中下载不大于100MB的文件至本地 在JupyterLab文件列表中,选择需要下载的文件,单击右键,在操作菜单中选择“Download”下载至本地。 下载的目的路径,为您本地浏览器设置的下载目录。 图1 下载文件
签,单击“添加数据存储”,设置挂载参数。 设置本地挂载目录,在“/data/”目录下输入一个文件夹名称,例如:demo。挂载时,后台自动会在Notebook容器“的/data/”目录下创建该文件夹,用来挂载OBS文件系统。 选择存放OBS并行文件系统下的文件夹,单击“确定”。 挂
增加AppCode 功能介绍 为指定API网关应用创建新的AppCode,只有APP的创建用户才可以创建AppCode,且只有共享/专享版APIG的APP才能创建AppCode。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity