检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
pipeline_onnx_stable_diffusion_img2img_mslite.py是迁移后的文件,其中mslite_model_proxy.py是代理模型类,pipeline_onnx_stable_diffusion_img2img_mslite.py是从Stable Diffusion源码中的
但是这样也会导致无法正确找到源码中相对路径下的依赖,需要将对于diffusers包内的相对路径修改为绝对路径的形式。
index=['a', 'b', 'c']) df.to_hdf('obs://wolfros-net/hdftest.h5', key='df', mode='w') pd.read_hdf('obs://wolfros-net/hdftest.h5') 通过重写pandas源码
在构建镜像的过程中会下载完整的模型代码、执行环境,然后自动进行NPU适配,并将以上源码和环境打包至镜像中。 在ModelArts中创建训练作业如:SFT全参微调训练,执行代码包中例如:finetune/finetune_ds.sh 的脚本,开始训练。
在JupyterLab使用Git克隆代码仓 在JupyterLab中使用Git插件可以克隆GitHub开源代码仓库,快速查看及编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。
|——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.4.2-py3-none-any.whl
|——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl
docker exec -it ${container_name} bash Step6 安装Decord Decord是一个高性能的视频处理库,在昇腾环境中安装需要修改一些源码进行适配。 Decord建议安装在 /home/ma-user/lib中。
步骤五:开始训练 进入解压后的源码包根目录。 cd ${container_work_dir}/LLaVA 修改训练脚本模型路径(--model_name_or_path 模型路径)。 vim .
html中提示存在torch_npu.confusion_transpose, 梯度裁剪和亲和优化器等多个可替换的API,用户可根据代码堆栈找到需要替换的具体源码,然后根据API instruction跳转后的参考文档修改源代码,从而使能亲和API提升训练性能。
|——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl
图2 MME评估集 Step6 开始推理 进入解压后的源码包根目录。
|——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl
代码化参数插件的使用 代码参数化插件可以降低Notebook案例的复杂度,用户无需感知复杂的源码,按需调整参数快速进行案例复现、模型训练等。该插件可用于定制Notebook案例,适用于比赛、教学等场景。
|——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl
映射规则:当前不支持CPU配置cache盘;GPU与昇腾资源为单卡时,cache目录保持500G大小限制;除单卡外,cache盘大小与卡数有关,计算方式为卡数*500G,上限为3T。详细表1所示。
|——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl