检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
快速配置ModelArts委托授权 场景描述 为了完成AI计算的各种操作,AI平台ModelArts在任务执行过程中需要访问用户的其他服务,典型的就是训练过程中,需要访问OBS读取用户的训练数据。在这个过程中,就出现了ModelArts“代表”用户去访问其他云服务的情形。从安全角度出发
应用场景 本节介绍ModelArts服务的主要应用场景。 大模型 支持三方开源大模型,实现智能回答、聊天机器人、自动摘要、机器翻译、文本分类等任务。 AIGC 提供AIGC场景化解决方案,辅助创作文案、图像、音视频等数字内容。 自动驾驶 实现车辆自主感知环境、规划路径和控制行驶。支持自动驾驶场景
DevServer权限 表1 DevServer细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建DevServer实例 POST /v1/{project_id}/dev-servers modelarts:devserver:create ecs
服务管理权限 表1 服务管理细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 部署模型服务 POST /v1/{project_id}/services modelarts:service:create - √ √ 查询模型服务列表 GET /v1/{
配置Lite Server网络 Server创建后,需要进行网络配置,才可使其与Internet通信,本章节介绍网络配置步骤。网络配置主要分为以下两个场景: 单个弹性公网IP用于单个Server服务器:为单台Server服务器绑定一个弹性公网IP,该Server服务器独享网络资源。
volume_size 否 Integer EVS存储盘大小,最小为5GB,最大为4096GB,缺省值为5GB;如果type为OBS类型,该值不需要填写。 mount_path 否 String Notebook内的挂载路径,仅type为“obsfs”类型,该字段有效。
Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。
启动推理服务 本章节主要介绍大语言模型的推理服务启动方式,包括离线推理和在线推理2种方式。 离线推理 编辑一个python脚本,脚本内容如下,运行该脚本使用ascend-vllm进行模型离线推理。 from vllm import LLM, SamplingParams def
可以直接把SFS的目录直接挂载到调试节点的"/mnt/sfs_turbo"目录,或者保证对应目录的内容和SFS盘匹配。 调试时建议使用接近的方式,即:启动容器实例时使用"-v"参数来指定挂载某个宿主机目录到容器环境。
Open-Sora 1.0基于Lite Server适配PyTorch NPU训练指导(6.3.905) 本文档主要介绍如何在ModelArts Lite Server上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora训练和推理。 资源规格要求
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到
训练作业权限 表1 训练作业(新版)细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建训练作业 POST /v2/{project_id}/training-jobs modelarts:trainJob:create swr:repository
Lite Cluster使用流程 ModelArts Lite Cluster面向k8s资源型用户,提供托管式k8s集群,并预装主流AI开发插件以及自研的加速插件,以云原生方式直接向用户提供AI Native的资源、任务等能力,用户可以直接操作资源池中的节点和k8s集群。本文旨在帮助您了解
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的微调方案,包括SFT全参微调、LoRA微调、DPO训练方案。 DPO(Direct Preference
DEW kps:domainKeypairs:get kps:domainKeypairs:list kps:domainKeypairs:createkmskey KMS kms:cmk:list 挂载SFS Turbo盘 SFS Turbo SFS Turbo FullAccess
部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到
Wav2Lip推理基于Lite Server适配PyTorch NPU推理指导(6.3.907) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换
上传数据和算法至SFS(首次使用时需要) 前提条件 ECS服务器已挂载SFS,请参考ECS服务器挂载SFS Turbo存储。 在ECS中已经创建ma-user和ma-group用户,请参考在ECS中创建ma-user和ma-group。 已经安装obsutil,请参考下载和安装obsutil
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的