检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用ModelArts PyCharm插件调试训练ResNet50图像分类模型 本案例介绍如何将本地开发好的MindSpore模型代码,通过PyCharm ToolKit连接到ModelArts进行云上调试和训练。 开始使用样例前,请仔细阅读准备工作罗列的要求,提前完成准备工作。本案例的步骤如下所示:
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14
看训练效果。 说明: 日志文件中的迭代次数、LOSS和吞吐数据必须按照“迭代次数|loss|吞吐”格式存放,否则AI Gallery会数据解析失败,导致“吞吐”和“训练LOSS”曲线异常。 “/var/logs/user_metrics.log” import json import
实时同步用户所有DevServer实例状态 功能介绍 实时同步用户所有DevServer实例状态。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI
查询用户所有DevServer实例列表 功能介绍 查询用户所有DevServer实例列表。 接口约束 暂无约束。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET
不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
Lite Server资源管理 查看Lite Server服务器详情 启动或停止Lite Server服务器 同步Lite Server服务器状态 切换Lite Server服务器操作系统 监控Lite Server资源 NPU日志收集上传 释放Lite Server资源
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
Lite Server GPU裸金属服务器使用EulerOS内核误升级如何解决 GPU A系列裸金属服务器无法获取显卡如何解决 GPU裸金属服务器无法Ping通如何解决 GPU A系列裸金属服务器RoCE带宽不足如何解决? GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed
Lite Server GPU A系列裸金属服务器如何进行RoCE性能带宽测试? GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 如何将Ubuntu20.04内核版本从低版本升级至5.4.0-144-generic? 如何禁止Ubuntu 20.04内核自动升级?
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。
训练作业的数据集版本ID。 obs_url String 训练作业需要的数据集OBS路径URL,ModelArts会通过数据集ID和数据集版本ID自动解析生成。如:“/usr/data/”。 表20 obs 参数 参数类型 描述 obs_url String 训练作业需要的数据集OBS路径URL。如:“/usr/data/”。
配置Lite Server软件环境 NPU服务器上配置Lite Server资源软件环境 GPU服务器上配置Lite Server资源软件环境 父主题: Lite Server资源配置
不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14
步骤总览 单机单卡 资源购买: 购买对象存储服务OBS 购买容器镜像服务SWR 创建网络 购买ModelArts专属资源池 基本配置: 权限配置 obsutils安装和配置 (可选)工作空间配置 训练: 线下容器镜像构建及调试 上传镜像 上传数据和算法至OBS(首次使用时需要) 使用Notebook进行代码调试