检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
报错This site can't be reached 创建完Notebook后,单击操作列的“打开”,报错如下: 解决方案:复制页面的域名,添加到windows代理“请勿对以下列条目开头的地址使用代理服务器”中,然后保存就可以正常打开。 父主题: Notebook实例常见错误
从AI Gallery下载到桶里的数据集,再在ModelArts里创建数据集,显示样本数为0 首先需要确认从AI Gallery下载的数据格式,比如压缩包、excel文件等会被忽略,支持格式详情: 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本
Token认证 Token的有效期为24小时,需要使用同一个Token鉴权时,可以缓存起来,避免频繁调用。 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。
authorized_keys config id_rsa id_rsa.pub”。 提交创建训练作业后,训练过程中,训练作业的节点可通过域名+端口的方式SSH连接到其他节点,示例代码如下所示: ssh modelarts-job-a0978141-1712-4f9b-8a83-
URI-scheme 传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint 承载REST服务端点的服务器域名或IP,不同服务在不同区域时,对应Endpoint不同,可以从终端节点中获取。 例如IAM服务在“华北-北京一”区域的Endpoint为“iam.cn-north-1.myhuaweicloud
String 链路追踪ID。 表4 响应Body参数 参数 参数类型 描述 dns_domain_name String 页面调用指南展示的访问域名,可用于添加内网DNS解析。 vpcep_info Array of InternalChannelDetail objects 检索到的VPC访问通道信息。
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
在ECS中通过Dockerfile从0制作自定义镜像用于推理 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为模型。本文详细介绍如何使用自定义镜像完成模型的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在
在Notebook中通过Dockerfile从0制作自定义镜像 场景说明 本案例将基于ModelArts提供的MindSpore预置镜像,并借助ModelArts命令行工具(请参考ma-cli镜像构建命令介绍),通过加载镜像构建模板并修改Dockerfile,构建出一个新镜像,最后注册后在Notebook使用。
在Notebook中通过Dockerfile从0制作自定义镜像用于推理 场景说明 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为模型。 本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构
docker tag tf-1.13.2:latest swr.实际域名.com/deep-learning/tf-1.13.2:latest 使用docker push命令上传镜像。 sudo docker push swr.实际域名.com/deep-learning/tf-1.13.2:latest
从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 本案例介绍如何从0到1制作Ascend容器镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。 场景描述 目标:构建安
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是专属资源池的Ascend芯片。 准备工作 准备一套可以连接外部网络,装有Linux系统并安装18
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p